Painlev, Kernels in Hermitian Matrix Models

被引:8
|
作者
Duits, Maurice [1 ]
机构
[1] Royal Inst Technol KTH, Dept Math, S-10044 Stockholm, Sweden
关键词
Hermitian matrix models; Eigenvalue distribution; Correlation kernel; Critical phenomena; Painleve transcendents; Biorthogonal polynomials; Riemann-Hilbert problems; DOUBLE SCALING LIMIT; GAUSSIAN RANDOM MATRICES; RIEMANN-HILBERT PROBLEM; LARGE N LIMIT; BIORTHOGONAL POLYNOMIALS; ORTHOGONAL POLYNOMIALS; EXTERNAL SOURCE; 2-MATRIX MODEL; UNIVERSALITY; ASYMPTOTICS;
D O I
10.1007/s00365-013-9201-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After reviewing the Hermitian one-matrix model, we will give a brief introduction to the Hermitian two-matrix model and present a summary of some recent results on the asymptotic behavior of the two-matrix model with a quartic potential. In particular, we will discuss a limiting kernel in the quartic/quadratic case that is constructed out of a 4x4 Riemann-Hilbert problem related to the Painlev, II equation. Also an open problem will be presented.
引用
收藏
页码:173 / 196
页数:24
相关论文
共 50 条
  • [31] Representations of Hermitian kernels by means of Krein spaces
    Constantinescu, T
    Gheondea, A
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (06) : 917 - 951
  • [32] Correlations of eigenvectors for non-Hermitian random-matrix models
    Janik, RA
    Norenberg, W
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICAL REVIEW E, 1999, 60 (03): : 2699 - 2705
  • [33] Green's functions in non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 456 - 462
  • [34] SYMMETRY-BREAKING IN THE DOUBLE-WELL HERMITIAN MATRIX MODELS
    BROWER, RC
    DEO, N
    JAIN, S
    TAN, CI
    NUCLEAR PHYSICS B, 1993, 405 (01) : 166 - 187
  • [35] WHEN IS THE HERMITIAN/SKEW-HERMITIAN PART OF A MATRIX A POTENT MATRIX?
    Ilisevic, Dijana
    Thome, Nestor
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 24 : 95 - 112
  • [36] Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models
    Passemier, Damien
    McKay, Matthew R.
    Chen, Yang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 124 - 146
  • [37] Discrete Painlevé equation, Miwa variables and string equation in 5d matrix models
    A. Mironov
    A. Morozov
    Z. Zakirova
    Journal of High Energy Physics, 2019
  • [38] An Ultradiscrete Matrix Version of the Fourth Painlevé Equation
    Chris M. Field
    Chris M. Ormerod
    Advances in Difference Equations, 2007
  • [39] Variance Matrix Priors for Dirichlet Process Mixture Models With Gaussian Kernels
    Jing, Wei
    Papathomas, Michail
    Liverani, Silvia
    INTERNATIONAL STATISTICAL REVIEW, 2024,
  • [40] A Matrix Model with a Singular Weight and Painlevé III
    L. Brightmore
    F. Mezzadri
    M. Y. Mo
    Communications in Mathematical Physics, 2015, 333 : 1317 - 1364