Painlev, Kernels in Hermitian Matrix Models

被引:8
|
作者
Duits, Maurice [1 ]
机构
[1] Royal Inst Technol KTH, Dept Math, S-10044 Stockholm, Sweden
关键词
Hermitian matrix models; Eigenvalue distribution; Correlation kernel; Critical phenomena; Painleve transcendents; Biorthogonal polynomials; Riemann-Hilbert problems; DOUBLE SCALING LIMIT; GAUSSIAN RANDOM MATRICES; RIEMANN-HILBERT PROBLEM; LARGE N LIMIT; BIORTHOGONAL POLYNOMIALS; ORTHOGONAL POLYNOMIALS; EXTERNAL SOURCE; 2-MATRIX MODEL; UNIVERSALITY; ASYMPTOTICS;
D O I
10.1007/s00365-013-9201-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After reviewing the Hermitian one-matrix model, we will give a brief introduction to the Hermitian two-matrix model and present a summary of some recent results on the asymptotic behavior of the two-matrix model with a quartic potential. In particular, we will discuss a limiting kernel in the quartic/quadratic case that is constructed out of a 4x4 Riemann-Hilbert problem related to the Painlev, II equation. Also an open problem will be presented.
引用
收藏
页码:173 / 196
页数:24
相关论文
共 50 条
  • [21] Eigenvalue density in Hermitian matrix models by the Lax pair method
    McLeod, J. B.
    Wang, C. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [22] New developments in Non-hermitian Random Matrix Models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 297 - 314
  • [23] NEW CRITICAL BEHAVIORS FOR ONE-HERMITIAN-MATRIX MODELS
    PETROPOULOS, PMS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (07): : 1527 - 1551
  • [24] Limiting laws of linear eigenvalue statistics for Hermitian matrix models
    Pastur, L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [25] On the large D expansion of Hermitian multi-matrix models
    Carrozza, Sylvain
    Ferrari, Frank
    Tanasa, Adrian
    Valette, Guillaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
  • [26] Pseudo-hermitian random matrix models: General formalism
    Feinberg, Joshua
    Riser, Roman
    NUCLEAR PHYSICS B, 2022, 975
  • [27] HERMITIAN VERSUS ANTIHERMITIAN ONE-MATRIX MODELS AND THEIR HIERARCHIES
    HOLLOWOOD, T
    MIRAMONTES, L
    PASQUINUCCI, A
    NAPPI, C
    NUCLEAR PHYSICS B, 1992, 373 (01) : 247 - 280
  • [28] HERMITIAN MATRIX
    MARCUS, M
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (08): : 905 - &
  • [29] Hamiltonian reductions in matrix Painlevé systems
    Mikhail Bershtein
    Andrei Grigorev
    Anton Shchechkin
    Letters in Mathematical Physics, 113