Adiabatic theorem and generalized geometrical phase in the case of pseudo-Hermitian systems

被引:5
|
作者
Cheniti, S. [1 ]
Koussa, W. [1 ]
Medjber, A. [1 ]
Maamache, M. [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
关键词
pseudo-Hermitian; adiabatic theorem; geometrical phase; quantum brachistochrone; EVOLUTION;
D O I
10.1088/1751-8121/abad79
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of the adiabatic theorem for quantum systems governed by pseudo-Hermitian Hamiltonians and details of its demonstration are given. Introducing a modified time-dependent metric giving a precise description of the quantum unitary evolution where the obtained effective Hamiltonian is observable because it is mean value is real. We show that an eigenstate of a pseudo-Hermitian Hamiltonian slowly transported will acquire a real generalized geometrical phase factor which contains two contributions: the first one corresponds to the conventional Berry's phase as expected and a new geometrical term that we call the metric geometrical phase. We will apply our results in the cases of the famous time dependent brachistochrone problem and a non-Hermitian displaced harmonic oscillator.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Classical-quantum correspondence for two-level pseudo-Hermitian systems
    Raimundo, K.
    Baldiotti, M. C.
    Fresneda, R.
    Molina, C.
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [42] Explicit Realization of Pseudo-Hermitian and Quasi-Hermitian Quantum Mechanics for Two-Level Systems
    Mostafazadeh, Ali
    Ozcelik, Seher
    TURKISH JOURNAL OF PHYSICS, 2006, 30 (05): : 437 - 443
  • [43] Higher-order exceptional points and stochastic resonance in pseudo-Hermitian systems
    Panahi, Shirin
    Ye, Li-Li
    Lai, Ying-Cheng
    PHYSICAL REVIEW APPLIED, 2024, 22 (05):
  • [44] Pseudo-Hermitian Systems Constructed by Transformation Optics with Robustly Balanced Loss and Gain
    Luo, Liyou
    Luo, Jie
    Chu, Hongchen
    Lai, Yun
    ADVANCED PHOTONICS RESEARCH, 2021, 2 (02):
  • [45] Generalized gauge transformation and the corresponding Hermitian counterparts of SU(1,1), SU(2) pseudo-Hermitian Hamiltonians
    Liu, Ni
    Gu, Yan
    Liang, J-q
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [46] Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass
    Yahiaoui, S. A.
    Bentaiba, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [47] Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions
    T. I. Valchev
    A. B. Yanovski
    Journal of Nonlinear Mathematical Physics, 2018, 25 : 442 - 461
  • [48] Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions
    Valchev, T., I
    Yanovski, A. B.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2018, 25 (03) : 442 - 461
  • [49] Linear response for pseudo-Hermitian Hamiltonian systems: Application to PT-symmetric qubits
    Tetling, L.
    Fistul, M. V.
    Eremin, Ilya M.
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [50] Nonreciprocal dynamics of exceptional points in pseudo-Hermitian systems under artificial gauge field
    Jing, Yan-Zi
    Xiao, Ke-Wen
    Ma, Yan-Qiong
    Dou, Fu-Quan
    Wang, Wen-Yuan
    NEW JOURNAL OF PHYSICS, 2025, 27 (03):