Adiabatic theorem and generalized geometrical phase in the case of pseudo-Hermitian systems

被引:5
|
作者
Cheniti, S. [1 ]
Koussa, W. [1 ]
Medjber, A. [1 ]
Maamache, M. [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
关键词
pseudo-Hermitian; adiabatic theorem; geometrical phase; quantum brachistochrone; EVOLUTION;
D O I
10.1088/1751-8121/abad79
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of the adiabatic theorem for quantum systems governed by pseudo-Hermitian Hamiltonians and details of its demonstration are given. Introducing a modified time-dependent metric giving a precise description of the quantum unitary evolution where the obtained effective Hamiltonian is observable because it is mean value is real. We show that an eigenstate of a pseudo-Hermitian Hamiltonian slowly transported will acquire a real generalized geometrical phase factor which contains two contributions: the first one corresponds to the conventional Berry's phase as expected and a new geometrical term that we call the metric geometrical phase. We will apply our results in the cases of the famous time dependent brachistochrone problem and a non-Hermitian displaced harmonic oscillator.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds
    Yuxin Dong
    Weike Yu
    Chinese Annals of Mathematics, Series B, 2022, 43 : 949 - 976
  • [22] Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    da Providencia, J. P.
    BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (02) : 152 - 156
  • [23] Periodic pseudo-Hermitian Hamiltonian: Nonadiabatic geometric phase
    Maamache, M.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [24] Quantum phase transition in a pseudo-Hermitian Dicke model
    Deguchi, Tetsuo
    Ghosh, Pijush K.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [25] Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian
    N. Bebiano
    J. da Providência
    J. P. da Providência
    Brazilian Journal of Physics, 2016, 46 : 152 - 156
  • [26] On the time-reversal symmetry in pseudo-Hermitian systems
    Choutri, B.
    Cherbal, O.
    Ighezou, F. Z.
    Trifonov, D. A.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (11):
  • [27] Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
    Jain, Sudhir R.
    Srivastava, Shashi C. L.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 989 - 997
  • [28] MONTEL TYPE THEOREM FOR CR MAPPINGS BETWEEN PSEUDO-HERMITIAN CR MANIFOLDS
    Lee, Hanjin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (05) : 1289 - 1299
  • [29] A note on pseudo-Hermitian systems with point interactions and quantum separability
    Fei, Shao-Ming
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (09) : 887 - 892
  • [30] Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
    Sudhir R. Jain
    Shashi C. L. Srivastava
    Pramana, 2009, 73 : 989 - 997