An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations

被引:4
|
作者
Xu, Yuan [1 ]
Lei, Siu-Long [1 ]
Sun, Hai-Wei [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Fractional diffusion equations; Multigrid method; Preconditioner; Anisotropy; FINITE-DIFFERENCE APPROXIMATIONS; SPECTRAL-ANALYSIS; LINEAR-SYSTEMS; SCHEME; REMOVAL;
D O I
10.1016/j.camwa.2022.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The anisotropic space-fractional diffusion equations in two dimensions are discretized by the Crank-Nicolson difference scheme with the weighted and shifted Grunwald formula, which is unconditionally stable and second -order convergence. The coefficient matrix of the discretized linear system possesses a two-level Toeplitz-like structure. Due to the anisotropy, the standard multigrid method converges slowly. By utilizing the GMRES method with a newly proposed tridiagonal preconditioner as a smoother, the convergence rate of the multigrid method can be accelerated significantly. The proposed tridiagonal preconditioner is shown to be invertible and a numerical experiment is given to demonstrate the efficiency of the proposed multigrid method with preconditioned smoother.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [31] Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations
    Yongtao Zhou
    Chengjian Zhang
    Luigi Brugnano
    Numerical Algorithms, 2020, 84 : 633 - 649
  • [32] A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains
    Du, Ning
    Sun, Hai-Wei
    Wang, Hong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (01):
  • [33] Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations
    Zhou, Yongtao
    Zhang, Chengjian
    Brugnano, Luigi
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 633 - 649
  • [34] A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains
    Ning Du
    Hai-Wei Sun
    Hong Wang
    Computational and Applied Mathematics, 2019, 38
  • [35] SPECTRAL ANALYSIS AND MULTIGRID METHODS FOR FINITE VOLUME APPROXIMATIONS OF SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Donatelli, Marco
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4007 - A4039
  • [36] A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations
    Liu, Jun
    Zhu, Chen
    Chen, Yanping
    Fu, Hongfei
    APPLIED NUMERICAL MATHEMATICS, 2021, 160 : 331 - 348
  • [37] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [38] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Tang, Y. (tyf@lsec.cc.ac.cn), 1600, Academic Press Inc. (276):
  • [39] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38
  • [40] A multigrid solver for two-dimensional stochastic diffusion equations
    Le Maître, OP
    Knio, OM
    Debusschere, BJ
    Najm, HN
    Ghanem, RG
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (41-42) : 4723 - 4744