An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations

被引:4
|
作者
Xu, Yuan [1 ]
Lei, Siu-Long [1 ]
Sun, Hai-Wei [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Fractional diffusion equations; Multigrid method; Preconditioner; Anisotropy; FINITE-DIFFERENCE APPROXIMATIONS; SPECTRAL-ANALYSIS; LINEAR-SYSTEMS; SCHEME; REMOVAL;
D O I
10.1016/j.camwa.2022.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The anisotropic space-fractional diffusion equations in two dimensions are discretized by the Crank-Nicolson difference scheme with the weighted and shifted Grunwald formula, which is unconditionally stable and second -order convergence. The coefficient matrix of the discretized linear system possesses a two-level Toeplitz-like structure. Due to the anisotropy, the standard multigrid method converges slowly. By utilizing the GMRES method with a newly proposed tridiagonal preconditioner as a smoother, the convergence rate of the multigrid method can be accelerated significantly. The proposed tridiagonal preconditioner is shown to be invertible and a numerical experiment is given to demonstrate the efficiency of the proposed multigrid method with preconditioned smoother.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [11] A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations
    Chen, Hao
    lv, Wen
    Zhang, Tongtong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 360 : 1 - 14
  • [12] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [13] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Noghrei, Nafiseh
    Kerayechian, Asghar
    Soheili, Ali R.
    MATHEMATICAL SCIENCES, 2022, 16 (01) : 87 - 96
  • [14] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Nafiseh Noghrei
    Asghar Kerayechian
    Ali R. Soheili
    Mathematical Sciences, 2022, 16 : 87 - 96
  • [15] A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
    Xu Chen
    Si-Wen Deng
    Siu-Long Lei
    Journal of Scientific Computing, 2019, 80 : 1033 - 1057
  • [16] A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
    Chen, Xu
    Deng, Si-Wen
    Lei, Siu-Long
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1033 - 1057
  • [17] An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients
    Pan, Kejia
    Sun, Hai-Wei
    Xu, Yuan
    Xu, Yufeng
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [18] The Fast Implementation of the ADI-CN Method for a Class of Two-Dimensional Riesz Space-Fractional Diffusion Equations
    Xing, Zhiyong
    Wen, Liping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 942 - 956
  • [19] All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations
    Donatelli, Marco
    Krause, Rolf
    Mazza, Mariarosa
    Trotti, Ken
    CALCOLO, 2021, 58 (04)
  • [20] Muntz Spectral Method for Two-Dimensional Space-Fractional Convection-Diffusion Equation
    Hou, Dianming
    Azaiez, Mejdi
    Xu, Chuanju
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) : 1415 - 1443