Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering

被引:0
|
作者
Diakonikolas, Ilias [1 ]
Karmalkar, Sushrut [2 ]
Kane, Daniel [3 ]
Price, Eric [2 ]
Stewart, Alistair [4 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] UT Austin, Austin, TX USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] Web3 Fdn, La Jolla, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study high-dimensional sparse estimation tasks in a robust setting where a constant fraction of the dataset is adversarially corrupted. Specifically, we focus on the fundamental problems of robust sparse mean estimation and robust sparse PCA. We give the first practically viable robust estimators for these problems. In more detail, our algorithms are sample and computationally efficient and achieve near-optimal robustness guarantees. In contrast to prior provable algorithms which relied on the ellipsoid method, our algorithms use spectral techniques to iteratively remove outliers from the dataset. Our experimental evaluation on synthetic data shows that our algorithms are scalable and significantly outperform a range of previous approaches, nearly matching the best error rate without corruptions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Sparse-to-Dense Depth Estimation in Videos via High-Dimensional Tensor Voting
    Wang, Botao
    Zou, Junni
    Li, Yong
    Ju, Kuanyu
    Xiong, Hongkai
    Zheng, Yuan F.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (01) : 68 - 79
  • [42] Iterative Maximum Likelihood and Outlier-robust Bipercentile Estimation of Parameters of Compound-Gaussian Clutter With Inverse Gaussian Texture
    Shui, Peng-Lang
    Shi, Li-Xiang
    Yu, Han
    Huang, Yu-Ting
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1572 - 1576
  • [43] BACKWARD HIDDEN MARKOV CHAIN FOR OUTLIER-ROBUST FILTERING AND FIXED-INTERVAL SMOOTHING
    Ait-El-Fquih, Boujemaa
    Gouy-Pailler, Cedric
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5504 - 5508
  • [44] Penalised robust estimators for sparse and high-dimensional linear models
    Umberto Amato
    Anestis Antoniadis
    Italia De Feis
    Irene Gijbels
    Statistical Methods & Applications, 2021, 30 : 1 - 48
  • [45] Penalised robust estimators for sparse and high-dimensional linear models
    Amato, Umberto
    Antoniadis, Anestis'
    De Feis, Italia
    Gijbels, Irene
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 1 - 48
  • [46] Outlier-robust tri-percentile parameter estimation of K-distributions
    Yu, Han
    Shui, Peng-Lang
    Lu, Kai
    SIGNAL PROCESSING, 2021, 181
  • [47] Iterative Collaborative Filtering for Sparse Matrix Estimation
    Borgs, Christian
    Chayes, Jennifer T.
    Shah, Devavrat
    Yu, Christina Lee
    OPERATIONS RESEARCH, 2022, 70 (06) : 3143 - 3175
  • [48] Outlier-robust estimation of a sparse linear mode using l1-penalized Huber's M-estimator
    Dalalyan, Arnak S.
    Thompson, Philip
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [49] Outlier detection for high-dimensional data
    Ro, Kwangil
    Zou, Changliang
    Wang, Zhaojun
    Yin, Guosheng
    BIOMETRIKA, 2015, 102 (03) : 589 - 599
  • [50] Robust estimation of a high-dimensional integrated covariance matrix
    Morimoto, Takayuki
    Nagata, Shuichi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1102 - 1112