Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering

被引:0
|
作者
Diakonikolas, Ilias [1 ]
Karmalkar, Sushrut [2 ]
Kane, Daniel [3 ]
Price, Eric [2 ]
Stewart, Alistair [4 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] UT Austin, Austin, TX USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] Web3 Fdn, La Jolla, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study high-dimensional sparse estimation tasks in a robust setting where a constant fraction of the dataset is adversarially corrupted. Specifically, we focus on the fundamental problems of robust sparse mean estimation and robust sparse PCA. We give the first practically viable robust estimators for these problems. In more detail, our algorithms are sample and computationally efficient and achieve near-optimal robustness guarantees. In contrast to prior provable algorithms which relied on the ellipsoid method, our algorithms use spectral techniques to iteratively remove outliers from the dataset. Our experimental evaluation on synthetic data shows that our algorithms are scalable and significantly outperform a range of previous approaches, nearly matching the best error rate without corruptions.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Outlier-robust spectral estimation for spatial lattice processes
    Nirel, R
    Mugglestone, MA
    Barnett, V
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (12) : 3095 - 3111
  • [12] High-dimensional Sparse Embeddings for Collaborative Filtering
    Van Balen, Jan
    Goethals, Bart
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 575 - 581
  • [13] On the Convergence of IRLS and Its Variants in Outlier-Robust Estimation
    Peng, Liangzu
    Kummerle, Christian
    Vidal, Rene
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17808 - 17818
  • [14] Outlier-Robust Filtering for Nonlinear Systems With Selective Observations Rejection
    Chughtai, Aamir Hussain
    Tahir, Muhammad
    Uppal, Momin
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 6887 - 6897
  • [15] Outlier-robust parameter estimation for unnormalized statistical models
    Sasaki, Hiroaki
    Takenouchi, Takashi
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 223 - 252
  • [16] Generalized sparse and outlier-robust broad learning systems for multi-dimensional output problems
    Zhang, Yuao
    Dai, Yunwei
    Ke, Shuya
    Wu, Qingbiao
    Li, Jing
    INFORMATION SCIENCES, 2024, 677
  • [17] High-dimensional Robust Mean Estimation via Gradient Descent
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Soltanolkotabi, Mahdi
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [18] High-dimensional Robust Mean Estimation via Gradient Descent
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Soltanolkotabi, Mahdi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [19] Robust Testing in High-Dimensional Sparse Models
    George, Anand Jerry
    Canonne, Clement L.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [20] Estimation of high-dimensional vector autoregression via sparse precision matrix
    Poignard, Benjamin
    Asai, Manabu
    ECONOMETRICS JOURNAL, 2023, 26 (02): : 307 - 326