Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering

被引:0
|
作者
Diakonikolas, Ilias [1 ]
Karmalkar, Sushrut [2 ]
Kane, Daniel [3 ]
Price, Eric [2 ]
Stewart, Alistair [4 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] UT Austin, Austin, TX USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] Web3 Fdn, La Jolla, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study high-dimensional sparse estimation tasks in a robust setting where a constant fraction of the dataset is adversarially corrupted. Specifically, we focus on the fundamental problems of robust sparse mean estimation and robust sparse PCA. We give the first practically viable robust estimators for these problems. In more detail, our algorithms are sample and computationally efficient and achieve near-optimal robustness guarantees. In contrast to prior provable algorithms which relied on the ellipsoid method, our algorithms use spectral techniques to iteratively remove outliers from the dataset. Our experimental evaluation on synthetic data shows that our algorithms are scalable and significantly outperform a range of previous approaches, nearly matching the best error rate without corruptions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Outlier-Robust PCA: The High-Dimensional Case
    Xu, Huan
    Caramanis, Constantine
    Mannor, Shie
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 546 - 572
  • [2] Outlier-Robust Iterative Extended Kalman Filtering
    Tao, Yangtianze
    Yau, Stephen Shing-Toung
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 743 - 747
  • [3] Outlier-Robust Sparse Estimation via Non-Convex Optimization
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Gupta, Shivam
    Kane, Daniel M.
    Soltanolkotabi, Mahdi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
    Diakonikolas, Ilias
    Kane, Daniel M.
    Lee, Jasper C. H.
    Pensia, Ankit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] ON GROUPING EFFECT OF SPARSE STABLE OUTLIER-ROBUST REGRESSION
    Suzuki, Kyohei
    Yukawa, Masahiro
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [6] Graph Embedding with Outlier-Robust Ratio Estimation
    Satta, Kaito
    Sasaki, Hiroaki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (10) : 1812 - 1816
  • [7] Outlier-Robust State Estimation for Humanoid Robots
    Piperakis, Stylianos
    Kanoulas, Dimitrios
    Tsagarakis, Nikos G.
    Trahanias, Panos
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 706 - 713
  • [8] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [9] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [10] SPARSE STABLE OUTLIER-ROBUST REGRESSION WITH MINIMAX CONCAVE FUNCTION
    Suzuki, Kyohei
    Yukawa, Masahiro
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,