Thermal Conductivity Measurement Methods for SiGe Thermoelectric Materials

被引:9
|
作者
Llin, L. Ferre [1 ]
Samarelli, A. [1 ]
Zhang, Y. [1 ]
Weaver, J. M. R. [1 ]
Dobson, P. [1 ]
Cecchi, S. [2 ]
Chrastina, D. [2 ]
Isella, G. [2 ]
Etzelstorfer, T. [3 ]
Stangl, J. [3 ]
Gubler, E. Muller [4 ]
Paul, D. J. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[2] Politecn Milan, L NESS, Como, Italy
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Swiss Fed Inst Technol, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Silicon germanium; thermal conductivity; thermoelectrics; heterostructure; device fabrication;
D O I
10.1007/s11664-013-2505-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new technique to measure the thermal conductivity of thermoelectric materials at the microscale has been developed. The structure allows the electrical conductivity, thermal conductivity, and Seebeck coefficient to be measured on a single device. The thermal conductivity is particularly difficult to measure since it requires precise estimation of the heat flux injected into the material. The new technique is based on a differential method where the parasitic contributions of the supporting beams of a Hall bar are removed. The thermal measurements with integrated platinum thermometers on the device are cross-checked using thermal atomic force microscopy and validated by finite-element analysis simulations.
引用
收藏
页码:2376 / 2380
页数:5
相关论文
共 50 条
  • [41] Some new methods for the measurement of thermal conductivity
    Barratt, T
    Winter, RM
    PHILOSOPHICAL MAGAZINE, 1925, 49 (290): : 313 - 322
  • [42] Thermal Expansion and Thermal Conductivity Measurement Method for Polymeric Materials
    Yamane, Tsuneyuki
    SEN-I GAKKAISHI, 2009, 65 (06) : P212 - P215
  • [43] Si and SiGe Nanowires: Fabrication Process and Thermal Conductivity Measurement by 3ω-Scanning Thermal Microscopy
    Grauby, Stephane
    Puyoo, Etienne
    Rampnoux, Jean-Michel
    Rouviere, Emmanuelle
    Dilhaire, Stefan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17): : 9025 - 9034
  • [44] Thermal conductivity of insulating refractory materials: Comparison of steady-state and transient measurement methods
    Vitiello, Diana
    Nait-Ali, Benoit
    Tessier-Doyen, Nicolas
    Tonnesen, Thorsten
    Laim, Luis
    Rebouillat, Lionel
    Smith, David S.
    OPEN CERAMICS, 2021, 6
  • [45] Reducing thermal conductivity of thermoelectric materials by using a narrow wire geometry
    Hasegawa, Yasuhiro
    Murata, Masayuki
    Nakamura, Daiki
    Komine, Takashi
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [46] Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials
    Zheng, XJ
    Zhu, LL
    Zhou, YH
    Zhang, QJ
    APPLIED PHYSICS LETTERS, 2005, 87 (24) : 1 - 3
  • [47] Phonon engineering significantly reducing thermal conductivity of thermoelectric materials: a review
    Chuan-Dong Zhou
    Bo Liang
    Wen-Jie Huang
    Jacques-Guillaume Noudem
    Xiao-Jian Tan
    Jun Jiang
    Rare Metals, 2023, 42 : 2825 - 2839
  • [48] Thallium-free thermoelectric materials with extremely low thermal conductivity
    Yamanaka, Shinsuke
    Kurosaki, Ken
    Charoenphakdee, Anek
    Matsumoto, Hideaki
    Muta, Hiroaki
    THERMOELECTRIC POWER GENERATION, 2008, 1044 : 333 - 342
  • [49] Evaluating the effect of grain size distribution on thermal conductivity of thermoelectric materials
    Das, Priyabrata
    Bathula, Sivaiah
    Gollapudi, Srikant
    NANO EXPRESS, 2020, 1 (02):
  • [50] New route for the formation of SnSe thermoelectric materials with low thermal conductivity
    Kundu, Subrata
    Yi, Su-In
    Yu, Choongho
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253