Thermal Conductivity Measurement Methods for SiGe Thermoelectric Materials

被引:9
|
作者
Llin, L. Ferre [1 ]
Samarelli, A. [1 ]
Zhang, Y. [1 ]
Weaver, J. M. R. [1 ]
Dobson, P. [1 ]
Cecchi, S. [2 ]
Chrastina, D. [2 ]
Isella, G. [2 ]
Etzelstorfer, T. [3 ]
Stangl, J. [3 ]
Gubler, E. Muller [4 ]
Paul, D. J. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[2] Politecn Milan, L NESS, Como, Italy
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Swiss Fed Inst Technol, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Silicon germanium; thermal conductivity; thermoelectrics; heterostructure; device fabrication;
D O I
10.1007/s11664-013-2505-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new technique to measure the thermal conductivity of thermoelectric materials at the microscale has been developed. The structure allows the electrical conductivity, thermal conductivity, and Seebeck coefficient to be measured on a single device. The thermal conductivity is particularly difficult to measure since it requires precise estimation of the heat flux injected into the material. The new technique is based on a differential method where the parasitic contributions of the supporting beams of a Hall bar are removed. The thermal measurements with integrated platinum thermometers on the device are cross-checked using thermal atomic force microscopy and validated by finite-element analysis simulations.
引用
收藏
页码:2376 / 2380
页数:5
相关论文
共 50 条
  • [21] Thermoelectric Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe, GeTe, and SiGe
    M. Yu. Shtern
    A. A. Sherchenkov
    Yu. I. Shtern
    M. S. Rogachev
    A. V. Babich
    Nanobiotechnology Reports, 2021, 16 : 363 - 372
  • [22] Modeling of thermal conductivity in high performing thermoelectric materials
    Hatzikraniotis, E.
    Kyratsi, Th.
    Paraskevopoulos, K. M.
    EUROTHERM SEMINAR NO 108 - NANOSCALE AND MICROSCALE HEAT TRANSFER V, 2017, 785
  • [23] New low thermal conductivity materials for thermoelectric applications
    Caillat, T
    Fleurial, JP
    PROCEEDINGS ICT'97 - XVI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 1997, : 446 - 453
  • [24] METHODS OF MEASUREMENT OF THERMAL CONDUCTIVITY OF GRAPHITES
    LUTKOV, AI
    VOLGA, VI
    DYMOV, BK
    ANUFRIEV, YP
    INDUSTRIAL LABORATORY, 1970, 36 (03): : 394 - &
  • [25] Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
    Huxtable, ST
    Abramson, AR
    Tien, CL
    Majumdar, A
    LaBounty, C
    Fan, X
    Zeng, GH
    Bowers, JE
    Shakouri, A
    Croke, ET
    APPLIED PHYSICS LETTERS, 2002, 80 (10) : 1737 - 1739
  • [26] METHODS OF MEASUREMENT OF THERMAL AND THERMOELECTRIC PARAMETERS OF SUBSTANCES
    KREMPASKY, J
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1966, 16 (02): : 136 - +
  • [27] Numerical Simulation of Thermal Conductivity of SiNW-SiGe0.3 Composite for Thermoelectric Applications
    Lee, Ming-Yi
    Li, Yiming
    Chuang, Min-Hui
    Ohori, Daisuke
    Samukawa, Seiji
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (05) : 2088 - 2092
  • [28] Effect of structural features on the thermal conductivity of SiGe-based materials
    Konstanze R. Hahn
    Claudio Melis
    Luciano Colombo
    The European Physical Journal B, 2014, 87
  • [29] Effect of structural features on the thermal conductivity of SiGe-based materials
    Hahn, Konstanze R.
    Melis, Claudio
    Colombo, Luciano
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (07):
  • [30] Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe
    Koh, Yee Kan
    Vineis, C. J.
    Calawa, S. D.
    Walsh, M. P.
    Cahill, David G.
    APPLIED PHYSICS LETTERS, 2009, 94 (15)