Thermal Measurement Techniques in Analytical Microfluidic Devices

被引:6
|
作者
Davaji, Benyamin [1 ]
Lee, Chung Hoon [1 ]
机构
[1] Marquette Univ, Nanoscale Devices Lab, Milwaukee, WI 53233 USA
来源
基金
美国国家科学基金会;
关键词
Engineering; Issue; 100; Thermal Particle Detection; Thermal Wave Analysis; Heat Penetration Time; Thermal Time Constant; Enthalpy Assay; Thermal Conductivity and Specific Heat;
D O I
10.3791/52828
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal measurement techniques have been used for many applications such as thermal characterization of materials and chemical reaction detection. Micromachining techniques allow reduction of the thermal mass of fabricated structures and introduce the possibility to perform high sensitivity thermal measurements in the micro-scale and nano-scale devices. Combining thermal measurement techniques with microfluidic devices allows performing different analytical measurements with low sample consumption and reduced measurement time by integrating the miniaturized system on a single chip. The procedures of thermal measurement techniques for particle detection, material characterization, and chemical detection are introduced in this paper.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Measurement Techniques for RF Nanoelectronic Devices
    Happy, Henri
    Haddadi, Kamel
    Theron, Didier
    Lasri, Tuami
    Dambrine, Gilles
    IEEE MICROWAVE MAGAZINE, 2014, 15 (01) : 30 - 39
  • [42] Characterizing the impact of thermal gels on isotachophoresis in microfluidic devices
    Ward, Cassandra L.
    Linz, Thomas H.
    ELECTROPHORESIS, 2020, 41 (09) : 691 - 696
  • [43] Thermal conductivity measurement of liquids in a microfluidic device
    D. Kuvshinov
    M. R. Bown
    J. M. MacInnes
    R. W. K. Allen
    R. Ge
    L. Aldous
    C. Hardacre
    N. Doy
    M. I. Newton
    G. McHale
    Microfluidics and Nanofluidics, 2011, 10 : 123 - 132
  • [44] Thermal conductivity measurement of liquids in a microfluidic device
    Kuvshinov, D.
    Bown, M. R.
    MacInnes, J. M.
    Allen, R. W. K.
    Ge, R.
    Aldous, L.
    Hardacre, C.
    Doy, N.
    Newton, M. I.
    McHale, G.
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (01) : 123 - 132
  • [45] Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices
    Hao, Zhenxia
    Zheng, Qinqin
    Jin, Lili
    Zhou, Sujuan
    Chen, Hongping
    Liu, Xin
    Lu, Chengyin
    FOOD CHEMISTRY, 2021, 342
  • [46] Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices
    Hao, Zhenxia
    Zheng, Qinqin
    Jin, Lili
    Zhou, Sujuan
    Chen, Hongping
    Liu, Xin
    Lu, Chengyin
    Food Chemistry, 2021, 342
  • [47] Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology
    Wu, Fabai
    Dekker, Cees
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (02) : 268 - 280
  • [48] Paper based microfluidic devices: a review of fabrication techniques and applications
    Aditya Anushka
    Prasanta Kumar Bandopadhyay
    The European Physical Journal Special Topics, 2023, 232 : 781 - 815
  • [49] Paper based microfluidic devices: a review of fabrication techniques and applications
    Bandopadhyay, Aditya
    Das, Prasanta Kumar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (06): : 781 - 815
  • [50] PRACTICAL THERMAL MEASUREMENT TECHNIQUES
    ORLOVE, GL
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1982, 371 : 72 - 81