FROST DAMAGE DETECTION IN SUGARCANE CROP USING MODIS IMAGES AND SRTM DATA

被引:6
|
作者
Theodor Rudorff, Bernardo Friedrich [1 ]
Aguiar, Daniel Alves [1 ]
Adami, Marcos [1 ]
Galvao Salgado, Moises Pereira [1 ]
机构
[1] Natl Inst Space Res INPE, Remote Sensing Div DSR, BR-12227010 Sao Jose Dos Campos, SP, Brazil
关键词
Sugarcane yield; MODIS time-series; SAO-PAULO STATE;
D O I
10.1109/IGARSS.2012.6352315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sugarcane production in the South-central region of Brazil has more than doubled over the last decade reaching a maximum of 557 million tons in 2010/11. A significant and unexpected decrease was observed in crop year 2011/12 dropping the production to 494 million tons. Several factors contributed to a major crop yield loss including a sudden frost event in Sao Paulo state. It is difficult to estimate the frost impact but remote sensing images might be useful to quantify the intensity of the damage and its spatial distribution. The objective of this study is to detect and evaluate the extent of the frost damage using MODIS, Landsat, and STRM data. Field work for classification and validation purposes was conducted shortly after frost occurrence. Preliminary analyses indicated that remote sensing satellite images were useful to detect and evaluate the extent the frost damage on sugarcane fields.
引用
收藏
页码:5709 / 5712
页数:4
相关论文
共 50 条
  • [21] Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data
    Huang, Huabing
    Liu, Caixia
    Wang, Xiaoyi
    Biging, Gregory S.
    Chen, Yanlei
    Yang, Jun
    Gong, Peng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 129 : 189 - 199
  • [22] Detection of Active Wildland Fires Using Multitemporal MODIS Images
    Kushida, Keiji
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (02) : 301 - 305
  • [23] Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
    Mkhabela, M. S.
    Bullock, P.
    Raj, S.
    Wang, S.
    Yang, Y.
    AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (03) : 385 - 393
  • [24] Characterizing crop productivity under heat stress using MODIS data
    Lai, Peiyu
    Marshall, Michael
    Darvishzadeh, Roshanak
    Tu, Kevin
    Nelson, Andrew
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 355
  • [25] Detection of Russian fires using MOPITT and MODIS data
    Lee, S
    Choi, GH
    Lim, HS
    Lee, JH
    Lee, KH
    Kim, YJ
    Kim, J
    ON THE CONVERGENCE OF BIO-INFORMATION-, ENVIRONMENTAL-, ENERGY-, SPACE- AND NANO-TECHNOLOGIES, PTS 1 AND 2, 2005, 277-279 : 816 - 823
  • [26] Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data
    Chen, Yaoliang
    Song, Xiaodong
    Wang, Shusen
    Huang, Jingfeng
    Mansaray, Lamin R.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 119 : 451 - 461
  • [27] ESTIMATION OF CROP LEAF AREA INDEX USING MODIS DIRECTIONAL REFLECTANCES DATA
    Liu, Yang
    Liu, Ronggao
    Liu, Siliang
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1533 - 1536
  • [28] MODIS Data-based Crop Classification using Selective Hierarchical Classification
    Kim, Yeseul
    Lee, Kyung-Do
    Na, Sang-Il
    Hong, Suk-Young
    Park, No-Wook
    Yoo, Hee Young
    KOREAN JOURNAL OF REMOTE SENSING, 2016, 32 (03) : 235 - 244
  • [29] Safe Landing Site Detection Using SRTM Data for the Unmanned Aerial Vehicles
    Aydin, Musa
    Kugu, Emin
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2125 - 2128
  • [30] Estimation of summer crop areas in the state of Parana, Brazil, using multitemporal EVI/Modis images
    Johann, Jerry Adriani
    Rocha, Jansle Vieira
    Duft, Daniel Garbellini
    Camargo Lamparelli, Rubens Augusto
    PESQUISA AGROPECUARIA BRASILEIRA, 2012, 47 (09) : 1295 - 1306