FROST DAMAGE DETECTION IN SUGARCANE CROP USING MODIS IMAGES AND SRTM DATA

被引:6
|
作者
Theodor Rudorff, Bernardo Friedrich [1 ]
Aguiar, Daniel Alves [1 ]
Adami, Marcos [1 ]
Galvao Salgado, Moises Pereira [1 ]
机构
[1] Natl Inst Space Res INPE, Remote Sensing Div DSR, BR-12227010 Sao Jose Dos Campos, SP, Brazil
关键词
Sugarcane yield; MODIS time-series; SAO-PAULO STATE;
D O I
10.1109/IGARSS.2012.6352315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sugarcane production in the South-central region of Brazil has more than doubled over the last decade reaching a maximum of 557 million tons in 2010/11. A significant and unexpected decrease was observed in crop year 2011/12 dropping the production to 494 million tons. Several factors contributed to a major crop yield loss including a sudden frost event in Sao Paulo state. It is difficult to estimate the frost impact but remote sensing images might be useful to quantify the intensity of the damage and its spatial distribution. The objective of this study is to detect and evaluate the extent of the frost damage using MODIS, Landsat, and STRM data. Field work for classification and validation purposes was conducted shortly after frost occurrence. Preliminary analyses indicated that remote sensing satellite images were useful to detect and evaluate the extent the frost damage on sugarcane fields.
引用
收藏
页码:5709 / 5712
页数:4
相关论文
共 50 条
  • [1] Data mining for sugarcane crop classification using MODIS data
    Antunes, J. F. G.
    Rodrigues, L. H. A.
    Oliveira, S. R. de M.
    EFITA/WCCA '11, 2011, : 55 - 66
  • [2] USING FRACTION IMAGES DERIVED FROM MODIS DATA FOR COFFEE CROP MAPPING
    Bispo, Rafael C.
    Lamparelli, Rubens A. C.
    Rocha, Jansle V.
    ENGENHARIA AGRICOLA, 2014, 34 (01): : 102 - 111
  • [3] Multi-temporal analysis of MODIS data to classify sugarcane crop
    Xavier, AC
    Rudorff, BFT
    Berka, LMS
    Moreira, MA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (04) : 755 - 768
  • [4] Monitoring and Mapping Winter Wheat Spring Frost Damage with MODIS Data and Statistical Data
    Chen, Di
    Liu, Buchun
    Lei, Tianjie
    Yang, Xiaojuan
    Liu, Yuan
    Bai, Wei
    Han, Rui
    Bai, Huiqing
    Chang, Naijie
    PLANTS-BASEL, 2023, 12 (23):
  • [5] A crop phenology detection method using time-series MODIS data
    Sakamoto, T
    Yokozawa, M
    Toritani, H
    Shibayama, M
    Ishitsuka, N
    Ohno, H
    REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) : 366 - 374
  • [6] Automated detection of sugarcane crop lines from UAV images using deep learning
    Ribeiro, Joao Batista
    da Silva, Renato Rodrigues
    Dias, Jocival Dantas
    Escarpinati, Mauricio Cunha
    Backes, Andre Ricardo
    INFORMATION PROCESSING IN AGRICULTURE, 2024, 11 (03): : 385 - 396
  • [7] Near real-time detection of crop fields with Modis images
    Rocha Eberhardt, Isaque Daniel
    Barreto Luiz, Alfredo Jose
    Formaggio, Antonio Roberto
    Sanches, Ieda Del'Arco
    PESQUISA AGROPECUARIA BRASILEIRA, 2015, 50 (07) : 605 - 614
  • [8] Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops
    Rampazo, Nuria Aparecida Miatto
    Picoli, Michelle Cristina Araujo
    De Castro Teixeira, Antonio Heriberto
    Cavaliero, Carla Kazue Nakao
    SUGAR TECH, 2021, 23 (03) : 524 - 535
  • [9] Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops
    Núria Aparecida Miatto Rampazo
    Michelle Cristina Araujo Picoli
    Antônio Heriberto De Castro Teixeira
    Carla Kazue Nakao Cavaliero
    Sugar Tech, 2021, 23 : 524 - 535
  • [10] Sugarcane crop line detection from UAV images using genetic algorithm and Radon transform
    Renato Rodrigues da Silva
    Mauricio Cunha Escarpinati
    André Ricardo Backes
    Signal, Image and Video Processing, 2021, 15 : 1723 - 1730