Fractional calculus in one-dimensional isotropic thermo-viscoelasticity

被引:55
|
作者
Ezzat, Magdy A. [1 ]
El-Karamany, Ahmed S. [2 ]
El-Bary, Alaa A. [3 ]
Fayik, Mohsen A. [1 ]
机构
[1] Univ Alexandria, Fac Educ, Dept Math, Alexandria, Egypt
[2] Nizwa Univ, Dept Math & Phys Sci, Nizwa 611, Oman
[3] Arab Acad Sci & Technol, Alexandria, Egypt
来源
COMPTES RENDUS MECANIQUE | 2013年 / 341卷 / 07期
关键词
Thermo-viscoelasticity; Fractional relaxation function; Non-Fourier heat conduction; State space approach; Laplace transforms; Fractional calculus; STATE-SPACE APPROACH; MAGNETO-THERMOELASTICITY; ORDER THEORY; FORMULATION; UNIQUENESS; THEOREMS;
D O I
10.1016/j.crme.2013.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new fractional relaxation operator is derived using the methodology of fractional calculus. The governing coupled fractional differential equations in the frame of the thermo-viscoelasticity with fractional order heat transfer are applied to the one-dimensional problem with heat sources. Laplace transform and state space techniques are used to get the solution. According to the numerical results and its graphs, conclusion about the new theory of thermo-viscoelasticity has been constructed. The theories of coupled thermo-viscoelasticity and of generalized thermo-viscoelasticity with one relaxation time follow as limit cases. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 50 条
  • [31] Equivalences and Contrasts of Thermo-Elasticity and Thermo-Viscoelasticity: A Comprehensive Critique
    Hilton, Harry H.
    JOURNAL OF THERMAL STRESSES, 2011, 34 (5-6) : 488 - 535
  • [32] Numerical study of transient one-dimensional diffusion employing the Fractional Calculus
    Scotton, Jaque Willian
    Sejje Suarez, Julian Moises
    Oliveira Goulart, Antonio Gledson
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2020, 12 (01): : 95 - 103
  • [33] HEAT INSTABILITY IN COUPLED DYNAMIC PROBLEMS OF THERMO-VISCOELASTICITY
    GUMENJUK, BP
    KARNAUKHOV, VG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (07): : 609 - 613
  • [34] Material characterization on the thermo-viscoelasticity of PP wood composites
    Liu, Xue
    Du, Tong-Liang
    Peng, Xiong-Qi
    Chen, Jun
    Gongneng Cailiao/Journal of Functional Materials, 2012, 43 (09): : 1099 - 1101
  • [35] One-dimensional haemodynamic model of a vascular network with fractional-order viscoelasticity
    Yanbarisov, Ruslan
    Gamilov, Timur
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (05) : 323 - 339
  • [36] HEAT INSTABILITY IN COUPLED DYNAMIC PROBLEMS OF THERMO-VISCOELASTICITY
    GUMENJUK, BP
    KARNAUKHOV, VG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1978, (07): : 609 - 613
  • [37] MODEL FOR ONE-DIMENSIONAL, NONLINEAR VISCOELASTICITY
    MACCAMY, RC
    QUARTERLY OF APPLIED MATHEMATICS, 1977, 35 (01) : 21 - 33
  • [38] State space approach to two-dimensional generalized thermo-viscoelasticity with two relaxation times
    Ezzat, MA
    Othman, MI
    El-Karamany, AMS
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2002, 40 (11) : 1251 - 1274
  • [39] Some remarks on one-dimensional functions and their Riemann-Liouville fractional calculus
    Qi Zhang
    Acta Mathematica Sinica, English Series, 2014, 30 : 517 - 524
  • [40] Some Remarks on One-dimensional Functions and Their Riemann-Liouville Fractional Calculus
    Zhang, Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (03) : 517 - 524