Fractional calculus in one-dimensional isotropic thermo-viscoelasticity

被引:55
|
作者
Ezzat, Magdy A. [1 ]
El-Karamany, Ahmed S. [2 ]
El-Bary, Alaa A. [3 ]
Fayik, Mohsen A. [1 ]
机构
[1] Univ Alexandria, Fac Educ, Dept Math, Alexandria, Egypt
[2] Nizwa Univ, Dept Math & Phys Sci, Nizwa 611, Oman
[3] Arab Acad Sci & Technol, Alexandria, Egypt
来源
COMPTES RENDUS MECANIQUE | 2013年 / 341卷 / 07期
关键词
Thermo-viscoelasticity; Fractional relaxation function; Non-Fourier heat conduction; State space approach; Laplace transforms; Fractional calculus; STATE-SPACE APPROACH; MAGNETO-THERMOELASTICITY; ORDER THEORY; FORMULATION; UNIQUENESS; THEOREMS;
D O I
10.1016/j.crme.2013.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new fractional relaxation operator is derived using the methodology of fractional calculus. The governing coupled fractional differential equations in the frame of the thermo-viscoelasticity with fractional order heat transfer are applied to the one-dimensional problem with heat sources. Laplace transform and state space techniques are used to get the solution. According to the numerical results and its graphs, conclusion about the new theory of thermo-viscoelasticity has been constructed. The theories of coupled thermo-viscoelasticity and of generalized thermo-viscoelasticity with one relaxation time follow as limit cases. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 50 条
  • [21] Thermo-viscoelasticity of polymer melts: experiments and modeling
    A. D. Drozdov
    E. A. Jensen
    J. de C. Christiansen
    Acta Mechanica, 2008, 197 : 211 - 245
  • [22] A constitutive theory in thermo-viscoelasticity at finite deformation
    Department of Mechanics and Engineering Sciences, Peking University, Beijing, 100871, China
    Mech Res Commun, 6 (679-686):
  • [23] Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
    Perdikaris, Paris
    Karniadakis, George Em
    ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (05) : 1012 - 1023
  • [24] Uniform Rates of Decay in Anisotropic Thermo-Viscoelasticity
    Muñoz Rivera J.E.
    Barreto R.K.
    Acta Applicandae Mathematica, 1998, 50 (3) : 207 - 224
  • [25] Discontinuities in generalized thermo-viscoelasticity under four theories
    El-Karamany, AS
    Ezzat, MA
    JOURNAL OF THERMAL STRESSES, 2004, 27 (12) : 1187 - 1212
  • [26] Generalized thermo-viscoelasticity with memory-dependent derivatives
    Ezzat, M. A.
    El-Karamany, A. S.
    El-Bary, A. A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 89 : 470 - 475
  • [27] REMARKS ON SOLUTIONS FOR SOME DYNAMIC PROBLEMS OF THERMO-VISCOELASTICITY
    NOWACKI, WK
    RANIECKI, B
    ARCHIWUM MECHANIKI STOSOWANEJ, 1968, 20 (03): : 337 - &
  • [28] Analysis and Numerical Simulation of Time-Fractional Derivative Contact Problem with Friction in Thermo-Viscoelasticity
    Bouallala, Mustapha
    Essoufi, EL-Hassan
    Ouafik, Youssef
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 61 - 76
  • [29] Some Remarks on One-dimensional Functions and Their Riemann–Liouville Fractional Calculus
    Qi ZHANG
    Acta Mathematica Sinica(English Series), 2014, 30 (03) : 517 - 524
  • [30] Study of one-dimensional contaminant transport in soils using fractional calculus
    Mirza, Itrat Abbas
    Akram, Muhammad Saeed
    Shah, Nehad Ali
    Akhtar, Shehraz
    Muneer, Mirfat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6839 - 6856