Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control

被引:41
|
作者
Nikiforow, K. [1 ]
Pennanen, J. [1 ]
Ihonen, J. [1 ]
Uski, S. [1 ]
Koski, P. [1 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland
基金
芬兰科学院;
关键词
PEMFC system; Power ramp rate; Dynamic behavior; Ejector; Fuel supply; Air supply; FLOW;
D O I
10.1016/j.jpowsour.2018.01.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [31] Design of an integrated power system using a proton exchange membrane fuel cell
    Lavorante, Maria Jose
    Messina, Luciano Gurevich
    Franco, Juan Isidro
    Bonelli, Pablo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (16) : 8631 - 8634
  • [32] Experimental campaign and assessment of a complete 240-kW Proton Exchange Membrane Fuel Cell power system for maritime applications
    Gadducci, E.
    Lamberti, T.
    Rivarolo, M.
    Magistri, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (53) : 22545 - 22558
  • [33] Inconsistent responses of cells on operating conditions in a 5 kW proton exchange membrane fuel cell stack
    Zhang, Xuexia
    Jiang, Yu
    Huang, Lei
    Chen, Weirong
    Brett, Dan
    ELECTROCHIMICA ACTA, 2021, 391
  • [34] Examination of the vibroacoustic characteristics of 6 kW proton exchange membrane fuel cell
    Grzeczka, Grzegorz
    Listewnik, Karol
    Klaczynski, Maciej
    Cioch, Witold
    JOURNAL OF VIBROENGINEERING, 2015, 17 (07) : 4025 - 4034
  • [35] Multivariable system identification and robust control of a proton exchange membrane fuel cell system
    Wang, Fu-Cheng
    Chen, Hsuan-Tsung
    Yang, Yee-Pien
    Chang, Hsin-Ping
    Yen, Jia-Yush
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 1293 - 1298
  • [36] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Sun, Wenhui
    Zhang, Hailun
    Jia, Lei
    Xue, Haoyuan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13681 - 13697
  • [37] Droplet Dynamics in a Proton Exchange Membrane Fuel Cell with Ejector-Based Recirculation
    Liu, Yang
    Luo, Xiaobing
    Tu, Zhengkai
    Chan, Siew Hwa
    ENERGY & FUELS, 2021, 35 (14) : 11533 - 11544
  • [38] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Wenhui Sun
    Hailun Zhang
    Lei Jia
    Haoyuan Xue
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13681 - 13697
  • [39] Research on Control Algorithm of Proton Exchange Membrane Fuel Cell Cooling System
    Ma, Tiancai
    Lin, Weikang
    Yang, Yanbo
    Cong, Ming
    Yu, Zhuoping
    Zhou, Qiongqiong
    ENERGIES, 2019, 12 (19)
  • [40] Proportional Integral Retarded Control of a Proton Exchange Membrane Fuel Cell System
    Ramirez, Adrian
    Gomez, Marco A.
    IFAC PAPERSONLINE, 2021, 54 (18): : 52 - 57