Notch Filters for Port-Hamiltonian Systems

被引:2
|
作者
Dirksz, D. A. [1 ]
Scherpen, J. M. A. [2 ]
van der Schaft, A. J. [2 ]
Steinbuch, M. [3 ]
机构
[1] Irmato Ind Solut, NL-9203 ZN Drachten, Netherlands
[2] Univ Groningen, Fac Math & Nat Sci, NL-9747 AG Groningen, Netherlands
[3] Eindhoven Univ Technol, Fac Mech Engn, NL-5612 AJ Eindhoven, Netherlands
关键词
Control design; nonlinear control systems; nonlinear dynamical systems; NONLINEAR INTERNAL-MODELS; OUTPUT REGULATION; INTERCONNECTION; DESIGN;
D O I
10.1109/TAC.2015.2390552
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many powerful tools exist for control design in the frequency domain, but are theoretically only justified for linear systems. On the other hand, nonlinear control deals with control design methodologies that are theoretically justified for a larger and more realistic class of systems, but primarily dealing with stability and to a lesser extent with performance. In this technical note a standard linear notch filter is modeled in the port-Hamiltonian (PH) framework, thereby proving that the notch filter is a passive system. The notch filter can then be interconnected with any other (nonlinear) PH system, while preserving the overall passivity property. By doing so, we can combine a frequency-based control method to improve performance, the notch filter, with the nonlinear control methodology of passivity-based control.
引用
收藏
页码:2440 / 2445
页数:6
相关论文
共 50 条
  • [41] Conditions on shifted passivity of port-Hamiltonian systems
    Monshizadeh, Nima
    Monshizadeh, Pooya
    Ortega, Romeo
    van der Schaft, Arjan
    SYSTEMS & CONTROL LETTERS, 2019, 123 : 55 - 61
  • [42] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222
  • [43] On Matched Disturbance Suppression for Port-Hamiltonian Systems
    Ferguson, Joel
    Wu, Dongjun
    Ortega, Romeo
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 892 - 897
  • [44] RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast
    Jacob, Birgit
    Kaiser, Julia T.
    Zwart, Hans
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4646 - 4665
  • [45] Boundary controlled irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    CHEMICAL ENGINEERING SCIENCE, 2022, 248
  • [46] IDENTIFICATION OF NONLINEAR CIRCUITS AS PORT-HAMILTONIAN SYSTEMS
    Najnudel, Judy
    Mueller, Remy
    Helie, Thomas
    Roze, David
    2021 24TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS (DAFX), 2021, : 1 - 8
  • [47] Passive observers for distributed port-Hamiltonian systems
    Toledo, Jesus
    Ramirez, Hector
    Wu, Yongxin
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2020, 53 (02): : 7587 - 7592
  • [48] Remarks on the geometric structure of port-Hamiltonian systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2024, 58 (06): : 274 - 279
  • [49] Robust port-Hamiltonian representations of passive systems
    Beattie, Christopher A.
    Mehrmann, Volker
    Van Dooren, Paul
    AUTOMATICA, 2019, 100 : 182 - 186
  • [50] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452