Remarks on the geometric structure of port-Hamiltonian systems

被引:0
|
作者
Kirchhoff, Jonas [1 ]
Maschke, Bernhard [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[2] Univ Lyon 1, LAGEPP, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Dirac structures; port-Hamiltonian systems; nonlinear systems; geometrical methods;
D O I
10.1016/j.ifacol.2024.08.293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the geometric structure of port-Hamiltonian systems. Starting with the intuitive understanding that port-Hamiltonian systems are "in between" certain closed Hamiltonian systems, the geometric structure of port-Hamiltonian systems must be "in between" the geometric structures of the latter systems. These are Courant algebroids; and hence the geometric structures should be related by Courant algebroid morphisms. Using this idea, we propose a definition of an intrinsic geometric structure and show that it is unique, if it exists. Copyright (C) 2024 The Authors.
引用
收藏
页码:274 / 279
页数:6
相关论文
共 50 条
  • [1] Geometric spatial reduction for port-Hamiltonian systems
    Ngoc Minh Trang Vu
    Lefevre, Laurent
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2019, 125 : 1 - 8
  • [2] Port-Hamiltonian Systems: Structure Recognition and Applications
    Salnikov, V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 197 - 201
  • [3] Mixed-dimensional geometric coupling of port-Hamiltonian systems
    Jaesehke, Jens
    Skrepek, Nathanael
    Ehrhardt, Matthias
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [4] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [5] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [6] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [7] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [8] Structure Preserving Observer Design for Port-Hamiltonian Systems
    Yaghmaei, Abolfazl
    Yazdanpanah, Mohammad Javad
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 1214 - 1220
  • [9] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [10] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057