We study the geometric structure of port-Hamiltonian systems. Starting with the intuitive understanding that port-Hamiltonian systems are "in between" certain closed Hamiltonian systems, the geometric structure of port-Hamiltonian systems must be "in between" the geometric structures of the latter systems. These are Courant algebroids; and hence the geometric structures should be related by Courant algebroid morphisms. Using this idea, we propose a definition of an intrinsic geometric structure and show that it is unique, if it exists. Copyright (C) 2024 The Authors.
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
Camlibel, M. K.
van der Schaft, A. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
van der Schaft, A. J.
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC),
2013,
: 2538
-
2543
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
van der Schaft, A. J.
Maschke, B. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon 1, Lab Automat & Genie Proc, F-69622 Villeurbanne, FranceUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands