Remarks on the geometric structure of port-Hamiltonian systems

被引:0
|
作者
Kirchhoff, Jonas [1 ]
Maschke, Bernhard [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[2] Univ Lyon 1, LAGEPP, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Dirac structures; port-Hamiltonian systems; nonlinear systems; geometrical methods;
D O I
10.1016/j.ifacol.2024.08.293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the geometric structure of port-Hamiltonian systems. Starting with the intuitive understanding that port-Hamiltonian systems are "in between" certain closed Hamiltonian systems, the geometric structure of port-Hamiltonian systems must be "in between" the geometric structures of the latter systems. These are Courant algebroids; and hence the geometric structures should be related by Courant algebroid morphisms. Using this idea, we propose a definition of an intrinsic geometric structure and show that it is unique, if it exists. Copyright (C) 2024 The Authors.
引用
收藏
页码:274 / 279
页数:6
相关论文
共 50 条
  • [31] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [32] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [33] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [34] Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos
    Polyuga, Rostyslav V.
    van der Schaft, Arjan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (06) : 1458 - 1462
  • [35] STRUCTURE-PRESERVING MODEL REDUCTION FOR NONLINEAR PORT-HAMILTONIAN SYSTEMS
    Chaturantabut, S.
    Beattie, C.
    Gugercin, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B837 - B865
  • [36] Disturbance structure decomposition for distributed-parameter port-Hamiltonian systems
    Nishida, G
    Yamakita, M
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2082 - 2087
  • [37] Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems
    Kotyczka, Paul
    Maschke, Bernhard
    Lefevre, Laurent
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 : 442 - 476
  • [38] Exergetic port-Hamiltonian systems for multibody dynamics
    Lohmayer, Markus
    Capobianco, Giuseppe
    Leyendecker, Sigrid
    MULTIBODY SYSTEM DYNAMICS, 2024,
  • [39] Structure-preserving model reduction for nonlinear port-Hamiltonian systems
    Beattie, Christopher
    Gugercin, Serkan
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6564 - 6569
  • [40] Finite element hybridization of port-Hamiltonian systems
    Brugnoli, Andrea
    Rashad, Ramy
    Zhang, Yi
    Stramigioli, Stefano
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 498