Remarks on the geometric structure of port-Hamiltonian systems

被引:0
|
作者
Kirchhoff, Jonas [1 ]
Maschke, Bernhard [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[2] Univ Lyon 1, LAGEPP, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Dirac structures; port-Hamiltonian systems; nonlinear systems; geometrical methods;
D O I
10.1016/j.ifacol.2024.08.293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the geometric structure of port-Hamiltonian systems. Starting with the intuitive understanding that port-Hamiltonian systems are "in between" certain closed Hamiltonian systems, the geometric structure of port-Hamiltonian systems must be "in between" the geometric structures of the latter systems. These are Courant algebroids; and hence the geometric structures should be related by Courant algebroid morphisms. Using this idea, we propose a definition of an intrinsic geometric structure and show that it is unique, if it exists. Copyright (C) 2024 The Authors.
引用
收藏
页码:274 / 279
页数:6
相关论文
共 50 条
  • [21] The Port-Hamiltonian Structure of Continuum Mechanics
    Rashad, Ramy
    Stramigioli, Stefano
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [22] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [23] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [24] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [25] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [26] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [27] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [28] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [29] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [30] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134