Selective CO2 hydrogenation on the γ-Al2O3 supported bimetallic Co-Cu catalyst

被引:16
|
作者
Yin, Shuxia [1 ]
Ge, Qingfeng [1 ]
机构
[1] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
关键词
CO2; hydrogenation; Bimetallic catalyst; Al2O3; support; Reaction pathways; Selectivity; Density functional theory; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; ADSORPTION; CONVERSION; METHANOL; ALUMINA; SURFACE; ENERGY; HYDROCARBONS; ACTIVATION;
D O I
10.1016/j.cattod.2012.01.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Recycling CO2 to fuel or other useful chemicals will have a positive impact on alleviating the greenhouse effect. In the present study, we analyzed the effect of introducing Cu to a Co-based catalyst on CO2 hydrogenation by examining the pathway and activation barriers of CO2 activation and hydrogenation over the gamma-Al2O3 supported Co-Cu clusters using periodic density functional theory slab calculations. Two reaction channels, CO2 + H. CO + OH and CO2 + H -> HCOO, were followed at different active sites. Introducing Cu to a Co-based cluster resulted in a less oxidized metal cluster. Consequently, the adsorbed CO2 became less activated on Co3Cu than that on Co-4. For the reactions only involving supported metal catalysts, introducing Cu led to a decrease of the activation barrier by 0.36 eV for HCOO formation but left the barrier for CO formation almost unchanged. On the other hand, the surface hydroxyls on the support directly participate in the elementary reactions at the metal-support interface. The adsorbed CO2 at the interface can be easily protonated by the hydroxyl on the support. MD trajectories showed that the protonated CO2 at the Co-4/oxide interface quickly dissociates at 300 K to CO and OH, and the OH further reacts with a surface hydroxyl disproportionately to form H2O at 500 K. At the interfacial site of the supported Co-Cu catalyst, the adsorbed COOH species was found to be the dominant product. The present study clearly demonstrated the bimetallic effect on catalytic activity and selectivity: introducing a second metal, in combination with the hydroxyls on the substrate, alters the reaction pathways, and consequently, the product distribution. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [41] The Effect of Cu/Zn Molar Ratio on CO2 Hydrogenation over Cu/ZnO/ZrO2/Al2O3 Catalyst
    Shaharun, Salina
    Shaharun, Maizatul S.
    Mohamad, Dasmawati
    Taha, Mohd F.
    3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): INNOVATIVE RESEARCH IN APPLIED SCIENCES FOR A SUSTAINABLE FUTURE, 2014, 1621 : 3 - 9
  • [42] Synthesis of Co-Cu/La2O3 Pervoskites for Hydrogenation of CO
    Nguyen Tien Thao
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (14) : 8082 - 8086
  • [43] Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation
    Qi, Tianqinji
    Zhao, Yiming
    Chen, Shaoyun
    Li, Weizuo
    Guo, Xinwen
    Zhang, Yongchun
    Song, Chunshan
    MOLECULAR CATALYSIS, 2021, 514
  • [44] A study of the activated decomposition of CO2 on the Cu component of a Cu/ZnO/Al2O3 catalyst
    Elliott, AJ
    Watson, MJ
    Tabatabaei, J
    Zemichael, FW
    Waugh, KC
    CATALYSIS LETTERS, 2002, 79 (1-4) : 1 - 6
  • [45] A Study of the Activated Decomposition of CO2 on the Cu Component of a Cu/ZnO/Al2O3 Catalyst
    A.J. Elliott
    M.J. Watson
    J. Tabatabaei
    F.W. Zemichael
    K.C. Waugh
    Catalysis Letters, 2002, 79 : 1 - 6
  • [46] Reforming of Methane by CO2 over Bimetallic Ni-Mn/γ-Al2O3 Catalyst
    Fakeeha, Anis Hamza
    Naeenn, Muhammad Awais
    Khan, Wasim Ullah
    Abasaeed, Ahmed Elhag
    Al-Fatesh, Ahmed Sadeq
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2014, 27 (02) : 214 - 220
  • [47] Reforming of Methane by CO2 over Bimetallic Ni-Mn/γ-Al2O3 Catalyst
    Anis Hamza Fakeeha
    Muhammad Awais Naeem
    Wasim Ullah Khan
    Ahmed Elhag Abasaeed
    Ahmed Sadeq Al-Fatesh
    ChineseJournalofChemicalPhysics, 2014, 27 (02) : 90 - 96
  • [48] CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst
    Yu, Wen-Zhu
    Fu, Xin-Pu
    Xu, Kai
    Ling, Chen
    Wang, Wei-Wei
    Jia, Chun-Jiang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04):
  • [49] Selective Conversion of Phenol in a Subcritical Water Medium Using γ-Al2O3 Supported Ni-Co Bimetallic Catalyst
    Shi, Yuzhen
    Chen, Shanshuai
    He, Liang
    Ning, Ping
    Guan, Qingqing
    CATALYSTS, 2019, 9 (03):
  • [50] Preparation and characterization of a model bimetallic catalyst:: Co-Pd nanoparticles supported on Al2O3
    Heemeier, M
    Carlsson, AF
    Naschitzki, M
    Schmal, M
    Bäumer, M
    Freund, HJ
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (21) : 4073 - 4076