Selective CO2 hydrogenation on the γ-Al2O3 supported bimetallic Co-Cu catalyst

被引:16
|
作者
Yin, Shuxia [1 ]
Ge, Qingfeng [1 ]
机构
[1] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
关键词
CO2; hydrogenation; Bimetallic catalyst; Al2O3; support; Reaction pathways; Selectivity; Density functional theory; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; ADSORPTION; CONVERSION; METHANOL; ALUMINA; SURFACE; ENERGY; HYDROCARBONS; ACTIVATION;
D O I
10.1016/j.cattod.2012.01.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Recycling CO2 to fuel or other useful chemicals will have a positive impact on alleviating the greenhouse effect. In the present study, we analyzed the effect of introducing Cu to a Co-based catalyst on CO2 hydrogenation by examining the pathway and activation barriers of CO2 activation and hydrogenation over the gamma-Al2O3 supported Co-Cu clusters using periodic density functional theory slab calculations. Two reaction channels, CO2 + H. CO + OH and CO2 + H -> HCOO, were followed at different active sites. Introducing Cu to a Co-based cluster resulted in a less oxidized metal cluster. Consequently, the adsorbed CO2 became less activated on Co3Cu than that on Co-4. For the reactions only involving supported metal catalysts, introducing Cu led to a decrease of the activation barrier by 0.36 eV for HCOO formation but left the barrier for CO formation almost unchanged. On the other hand, the surface hydroxyls on the support directly participate in the elementary reactions at the metal-support interface. The adsorbed CO2 at the interface can be easily protonated by the hydroxyl on the support. MD trajectories showed that the protonated CO2 at the Co-4/oxide interface quickly dissociates at 300 K to CO and OH, and the OH further reacts with a surface hydroxyl disproportionately to form H2O at 500 K. At the interfacial site of the supported Co-Cu catalyst, the adsorbed COOH species was found to be the dominant product. The present study clearly demonstrated the bimetallic effect on catalytic activity and selectivity: introducing a second metal, in combination with the hydroxyls on the substrate, alters the reaction pathways, and consequently, the product distribution. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [21] Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol
    Li, Hangjie
    Wang, Liang
    Gao, Xinhua
    Xiao, Feng-Shou
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (29) : 10446 - 10454
  • [22] Effect of Surface Hydroxyls on CO2 Hydrogenation Over Cu/γ-Al2O3 Catalyst: A Theoretical Study
    Zhang, Riguang
    Wang, Baojun
    Liu, Hongyan
    Ling, Lixia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 19811 - 19818
  • [23] Cu/ZnO/Al2O3 Catalyst Promoted with Amorphous MgO for Enhanced CO2 Hydrogenation to Methanol
    Chen, Hecao
    Xie, Shangzhi
    Jiang, Zhaocong
    Xu, Jing
    Zhu, Minghui
    CHEMCATCHEM, 2025,
  • [24] NH3-Induced Challenges in CO2 Hydrogenation over the Cu/ZnO/Al2O3 Catalyst
    Bie, Xuan
    Pan, Yukun
    Wang, Xiaowei
    Zhang, Shiyu
    Hu, Jiahui
    Yang, Xiaoxiao
    Li, Qinghai
    Zhang, Yanguo
    Przekop, Robert E.
    Zhang, Yayun
    Zhou, Hui
    JACS AU, 2025,
  • [25] CO2 fixation by hydrogenation over coprecipitated Co/Al2O3
    Akin, AN
    Ataman, M
    Aksoylu, AE
    Önsan, ZI
    REACTION KINETICS AND CATALYSIS LETTERS, 2002, 76 (02): : 265 - 270
  • [26] CO2 fixation by hydrogenation over coprecipitated Co/Al2O3
    A. Nilgün Akin
    Mustafa Ataman
    A. Erhan Aksoylu
    Z. Ilsen Önsan
    Reaction Kinetics and Catalysis Letters, 2002, 76 : 265 - 270
  • [28] Effects of pretreatment and reduction on the Co/Al2O3 catalyst for CO hydrogenation
    Dai, Xiaoping
    Yu, Changchun
    JOURNAL OF NATURAL GAS CHEMISTRY, 2008, 17 (03): : 288 - 292
  • [29] PREPARATION AND CHARACTERIZATION OF Co-Cu BIMETALLIC SHAPED CATALYST SUPPORTED ON TiO2
    Rad, Vida Nourozi
    Anbia, Mansoor
    Sadr, Moayed Hossaini
    Zare, Karim
    JOURNAL OF POROUS MEDIA, 2017, 20 (11) : 971 - 976
  • [30] Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2
    Das, Taraknath
    Sengupta, Siddhartha
    Deo, Goutam
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2013, 110 (01) : 147 - 162