Solitons and cnoidal waves of the Klein-Gordon-Zakharov equation in plasmas

被引:21
|
作者
Ebadi, Ghodrat [2 ]
Krishnan, E. V. [3 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Univ Tabriz, Fac Math Sci, Tabriz 5166614766, Iran
[3] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
来源
PRAMANA-JOURNAL OF PHYSICS | 2012年 / 79卷 / 02期
关键词
Solitons; cnoidal waves; integrability; 1-SOLITON SOLUTION; INSTABILITY;
D O I
10.1007/s12043-012-0307-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the Klein-Gordon-Zakharov equation with power-law nonlinearity. This is a coupled nonlinear evolution equation. The solutions for this equation are obtained by the travelling wave hypothesis method, (G'/G) method and the mapping method.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [21] Local Structure-Preserving Algorithms for the Klein-Gordon-Zakharov Equation
    Wang, Jialing
    Zhou, Zhengting
    Wang, Yushun
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1211 - 1238
  • [22] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [23] Existence and blowup of solutions for the modified Klein-Gordon-Zakharov equations for plasmas with a quantum correction
    Changhong Guo
    Shaomei Fang
    Advances in Difference Equations, 2017
  • [24] Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation
    Wang, Tingchun
    Zhang, Luming
    Jiang, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 433 - 443
  • [25] Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations
    Li, Qiuying
    Zheng, Xiaoxiao
    Wang, Zhenguo
    AIMS MATHEMATICS, 2023, 8 (04): : 8560 - 8579
  • [26] Existence and blowup of solutions for the modified Klein-Gordon-Zakharov equations for plasmas with a quantum correction
    Guo, Changhong
    Fang, Shaomei
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [27] On the decay problem for the Zakharov and Klein-Gordon-Zakharov systems in one dimension
    Martinez, Maria E.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 3733 - 3763
  • [28] Energy stable schemes for the Klein-Gordon-Zakharov equations
    Guo, Jiaojiao
    Zhuang, Qingqu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 150 - 163
  • [29] Conservative difference methods for the Klein-Gordon-Zakharov equations
    Wang, Tingchun
    Chen, Juan
    Zhang, Luming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 430 - 452
  • [30] GLOBAL SMOOTH SOLUTION FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    GUO, BL
    YUAN, GW
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) : 4119 - 4124