Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations

被引:1
|
作者
Li, Qiuying [1 ]
Zheng, Xiaoxiao [2 ]
Wang, Zhenguo [3 ]
机构
[1] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273155, Peoples R China
[3] Taiyuan Univ, Dept Math, Taiyuan 030032, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国国家自然科学基金;
关键词
coupled Klein-Gordon-Zakharov equations; periodic standing waves; orbital stability; Floquet theory; Hamiltonian system; SOLITARY WAVES; INSTABILITY;
D O I
10.3934/math.2023430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations {u(tt) - u(xx) + u + alpha uv +beta|u|(2)u = 0, v(tt) - v(xx) = (|u|(2))(xx), where alpha > 0 and beta are two real numbers and alpha > beta. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lame ' equation and Floquet theory. When period L -> infinity, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, beta = 0 is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.
引用
收藏
页码:8560 / 8579
页数:20
相关论文
共 50 条
  • [1] Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations
    Zheng, Xiaoxiao
    Shang, Yadong
    Peng, Xiaoming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2623 - 2633
  • [2] Orbital stability for periodic standing waves of the Klein-Gordon-Zakharov system and the beam equation
    Hakkaev, Sevdzhan
    Stanislavova, Milena
    Stefanov, Atanas
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (02): : 265 - 282
  • [3] Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations
    Chen Lin
    Acta Mathematicae Applicatae Sinica, 1999, 15 (1) : 54 - 64
  • [4] Orbital Instability of Standing Waves for the Klein-Gordon-Zakharov System
    甘在会
    蒋毅
    数学进展, 2008, (01) : 118 - 120
  • [5] Orbital instability of standing waves for the Klein-Gordon-Zakharov system
    Gan, Zaihui
    ADVANCED NONLINEAR STUDIES, 2008, 8 (02) : 413 - 428
  • [6] Orbital stability for periodic standing waves of the Klein–Gordon–Zakharov system and the beam equation
    Sevdzhan Hakkaev
    Milena Stanislavova
    Atanas Stefanov
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 265 - 282
  • [7] New solitary waves for the Klein-Gordon-Zakharov equations
    Nestor, Savaissou
    Houwe, Alphonse
    Rezazadeh, Hadi
    Bekir, Ahmet
    Betchewe, Gambo
    Doka, Serge Y.
    MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [8] Stability and instability of the standing waves for the Klein-Gordon-Zakharov system in one space dimension
    Yin, Silu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4428 - 4447
  • [9] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931
  • [10] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307