Resonant tunnelling and negative differential conductance in graphene transistors

被引:505
|
作者
Britnell, L. [1 ]
Gorbachev, R. V. [2 ]
Geim, A. K. [1 ,2 ]
Ponomarenko, L. A. [1 ]
Mishchenko, A. [1 ]
Greenaway, M. T. [3 ]
Fromhold, T. M. [3 ]
Novoselov, K. S. [1 ]
Eaves, L. [1 ,3 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
HETEROSTRUCTURES;
D O I
10.1038/ncomms2817
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene's unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Resonant tunnelling hot electron transistors: Present status and future prospects
    Yokoyama, N
    Imamura, K
    Takatsu, M
    Mori, T
    Adachihara, T
    Sugiyama, Y
    Sakuma, Y
    Tackeuchi, A
    Muto, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1717): : 2399 - 2411
  • [32] Nonequilibrium Green's functions and their relation to the negative differential conductance in the interacting resonant level model
    Sorantin, Max E.
    von der Linden, Wolfgang
    Lucrezi, Roman
    Arrigoni, Enrico
    PHYSICAL REVIEW B, 2019, 99 (07)
  • [33] MULTIPLE NEGATIVE TRANSCONDUCTANCE AND DIFFERENTIAL CONDUCTANCE IN A BIPOLAR-TRANSISTOR BY SEQUENTIAL QUENCHING OF RESONANT TUNNELING
    CAPASSO, F
    SEN, S
    CHO, AY
    SIVCO, DL
    APPLIED PHYSICS LETTERS, 1988, 53 (12) : 1056 - 1058
  • [34] Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures
    A. Mishchenko
    J. S. Tu
    Y. Cao
    R. V. Gorbachev
    J. R. Wallbank
    M. T. Greenaway
    V. E. Morozov
    S. V. Morozov
    M. J. Zhu
    S. L. Wong
    F. Withers
    C. R. Woods
    Y-J. Kim
    K. Watanabe
    T. Taniguchi
    E. E. Vdovin
    O. Makarovsky
    T. M. Fromhold
    V. I. Fal'ko
    A. K. Geim
    L. Eaves
    K. S. Novoselov
    Nature Nanotechnology, 2014, 9 : 808 - 813
  • [35] Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures
    Mishchenko, A.
    Tu, J. S.
    Cao, Y.
    Gorbachev, R. V.
    Wallbank, J. R.
    Greenaway, M. T.
    Morozov, V. E.
    Morozov, S. V.
    Zhu, M. J.
    Wong, S. L.
    Withers, F.
    Woods, C. R.
    Kim, Y-J.
    Watanabe, K.
    Taniguchi, T.
    Vdovin, E. E.
    Makarovsky, O.
    Fromhold, T. M.
    Fal'ko, V. I.
    Geim, A. K.
    Eaves, L.
    Novoselov, K. S.
    NATURE NANOTECHNOLOGY, 2014, 9 (10) : 808 - 813
  • [36] Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect
    Nguyen, V. Hung
    Mazzamuto, F.
    Saint-Martin, J.
    Bournel, A.
    Dollfus, P.
    NANOTECHNOLOGY, 2012, 23 (06)
  • [37] Spin conductance and tunnelling magnetoresistance in a fractal graphene superlattice with two ferromagnetic graphene electrodes
    Liu, De
    Zhang, Hongmei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (18)
  • [38] Noise Modeling of Graphene Resonant Channel Transistors
    Lekas, Michael
    Lee, Sunwoo
    Cha, Wujoon
    Hone, James
    Shepard, Kenneth
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (04) : 1276 - 1283
  • [39] Influence of edge roughness on graphene nanoribbon resonant tunnelling diodes
    Liang, Gengchiau
    Bin Khalid, Sharjeel
    Lam, Kai-Tak
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (21)
  • [40] On the multiple negative-differential-resistance (MNDR) InGaP/GaAs resonant tunneling bipolar transistors
    Liu, WC
    Pan, HJ
    Wang, WC
    Feng, SC
    Lin, KW
    Yu, KH
    Laih, LW
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (06) : 1054 - 1059