Resonant tunnelling and negative differential conductance in graphene transistors

被引:505
|
作者
Britnell, L. [1 ]
Gorbachev, R. V. [2 ]
Geim, A. K. [1 ,2 ]
Ponomarenko, L. A. [1 ]
Mishchenko, A. [1 ]
Greenaway, M. T. [3 ]
Fromhold, T. M. [3 ]
Novoselov, K. S. [1 ]
Eaves, L. [1 ,3 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
HETEROSTRUCTURES;
D O I
10.1038/ncomms2817
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene's unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Negative differential resistances in graphene double barrier resonant tunneling diodes
    Song, Yu
    Wu, Han-Chun
    Guo, Yong
    APPLIED PHYSICS LETTERS, 2013, 102 (09)
  • [22] Observation and circuit application of negative differential conductance in silicon single-electron transistors
    Ono, Y
    Takahashi, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (4B): : 2569 - 2573
  • [23] MEASUREMENT OF NEGATIVE DIFFERENTIAL CONDUCTANCE TO 40 GHZ FOR VERTICALLY INTEGRATED RESONANT TUNNELING DIODES
    MOUNAIX, P
    BEDU, P
    LIPPENS, D
    BARBIER, E
    ELECTRONICS LETTERS, 1991, 27 (15) : 1358 - 1360
  • [24] Resonant-tunnelling conductance of a finite-size amorphous sample
    Granot, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (43) : 8547 - 8553
  • [25] Wave function and conductance calculations for a quantum dot at resonant tunnelling peaks
    Butcher, PN
    McInnes, JA
    SURFACE SCIENCE, 1996, 361 (1-3) : 640 - 643
  • [26] Negative differential resistance in graphene nanoribbon superlattice field-effect transistors
    Chang, Sheng
    Zhao, Lei
    Lv, Yawei
    Wang, Hao
    Huang, Qijun
    He, Jin
    MICRO & NANO LETTERS, 2015, 10 (08) : 400 - 403
  • [27] Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes
    Boucherit, M.
    Soltani, A.
    Monroy, E.
    Rousseau, M.
    Deresmes, D.
    Berthe, M.
    Durand, C.
    De Jaeger, J. -C.
    APPLIED PHYSICS LETTERS, 2011, 99 (18)
  • [28] Voltage gain dependence of the negative differential conductance width in silicon single-hole transistors
    Miyaji, K
    Saitoh, M
    Hiramoto, T
    APPLIED PHYSICS LETTERS, 2006, 88 (14)
  • [29] Negative Differential Resistance in Planar Graphene Quantum Dot Resonant Tunneling Diodes
    Al-Dirini, Feras
    Mohammed, Mahmood A.
    Jiang, Liming
    Hossain, Sharafat
    Nasr, Babak
    Hossain, Faruque
    Nirmalathas, Ampalavanapillai
    Skafidas, Efstratios
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 965 - 968
  • [30] Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode
    Sattari-Esfahlan, S. M.
    Fouladi-Oskuei, J.
    Shojaei, S.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (14)