Resonant tunnelling and negative differential conductance in graphene transistors

被引:505
|
作者
Britnell, L. [1 ]
Gorbachev, R. V. [2 ]
Geim, A. K. [1 ,2 ]
Ponomarenko, L. A. [1 ]
Mishchenko, A. [1 ]
Greenaway, M. T. [3 ]
Fromhold, T. M. [3 ]
Novoselov, K. S. [1 ]
Eaves, L. [1 ,3 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
HETEROSTRUCTURES;
D O I
10.1038/ncomms2817
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene's unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Resonant tunnelling and negative differential conductance in graphene transistors
    L. Britnell
    R. V. Gorbachev
    A. K. Geim
    L. A. Ponomarenko
    A. Mishchenko
    M. T. Greenaway
    T. M. Fromhold
    K. S. Novoselov
    L. Eaves
    Nature Communications, 4
  • [2] Pseudosaturation and Negative Differential Conductance in Graphene Field-Effect Transistors
    Alarcon, Alfonso
    Viet-Hung Nguyen
    Berrada, Salim
    Querlioz, Damien
    Saint-Martin, Jerome
    Bournel, Arnaud
    Dollfus, Philippe
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (03) : 985 - 991
  • [3] Gate-controllable negative differential conductance in graphene tunneling transistors
    Nguyen, V. Hung
    Niquet, Y. M.
    Dollfus, P.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (10)
  • [4] NEGATIVE DIFFERENTIAL CONDUCTANCE DUE TO RESONANT STATES IN GALNAS-INP HOT-ELECTRON TRANSISTORS
    MIYAMOTO, Y
    YAMAURA, S
    FURUYA, K
    APPLIED PHYSICS LETTERS, 1990, 57 (20) : 2104 - 2106
  • [5] RESONANT TUNNELING TRANSISTORS WITH CONTROLLABLE NEGATIVE DIFFERENTIAL RESISTANCES
    BONNEFOI, AR
    MCGILL, TC
    BURNHAM, RD
    IEEE ELECTRON DEVICE LETTERS, 1985, 6 (12) : 636 - 638
  • [6] Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors
    Wang, Lin
    Chen, Xiaoshuang
    Hu, Yibin
    Yu, Anqi
    Lu, Wei
    NANOSCALE, 2014, 6 (21) : 12769 - 12779
  • [7] Strong negative differential conductance in strained graphene devices
    Chung Nguyen, M.
    Hung Nguyen, V.
    Huy-Viet Nguyen
    Dollfus, P.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (23)
  • [8] Negative Differential Conductance in graphene layer adsorbed with Beryllium
    Vagdevi, K.
    Devi, V. Radhika
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (4-5) : 3758 - 3761
  • [9] The dynamical conductance of graphene tunnelling structures
    Zhang, Huan
    Chan, K. S.
    Lin, Zijing
    NANOTECHNOLOGY, 2011, 22 (50)
  • [10] Negative differential conductance due to resonant tunnelling through SiO2/single-crystalline-Si double barrier structure
    Ishikawa, Y
    Ishihara, T
    Iwasaki, M
    Tabe, M
    ELECTRONICS LETTERS, 2001, 37 (19) : 1200 - 1201