Matrix covariates regression with simultaneously low rank and row(column) sparse parameter

被引:0
|
作者
Zhao, Junlong [1 ]
Zhan, Shushi [1 ]
Niu, Lu [1 ]
机构
[1] Beihang Univ, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Matrix covariates; low rank; sparse;
D O I
10.1109/ICICTA.2015.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the estimation of the parameters in the regression model with matrix covariates, where the matrix parameter is simultaneously low rank and row(column) sparse. A commonly used way is to reformulate the parameter as the sum of rank one matrix. This approach usually involves nonconvex optimization and the global solution is not guaranteed. In this paper, we propose a new method formulating a convex optimization problem. An alternative direction method of multipliers (ADMM) algorithm is proposed to solve this convex optimization problem. Simulation shows the effectiveness of our algorithm.
引用
收藏
页码:542 / 546
页数:5
相关论文
共 50 条
  • [41] Bayesian inference for adaptive low rank and sparse matrix estimation
    Jia, Xixi
    Feng, Xiangchu
    Wang, Weiwei
    Xu, Chen
    Zhang, Lei
    NEUROCOMPUTING, 2018, 291 : 71 - 83
  • [42] A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation
    Rohe, Karl
    Tao, Jun
    Han, Xintian
    Binkiewicz, Norbert
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [43] A NEW MODEL FOR SPARSE AND LOW-RANK MATRIX DECOMPOSITION
    Liu, Zisheng
    Li, Jicheng
    Li, Guo
    Bai, Jianchao
    Liu, Xuenian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 600 - 616
  • [44] Sparse Low-Rank Matrix Approximation for Data Compression
    Hou, Junhui
    Chau, Lap-Pui
    Magnenat-Thalmann, Nadia
    He, Ying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 1043 - 1054
  • [45] Subspace based low rank & joint sparse matrix recovery
    Biswas, Sampurna
    Poddar, Sunrita
    Dasgupta, Soura
    Mudumbai, Raghuraman
    Jacob, Mathews
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 642 - 646
  • [46] High Dimensional Low Rank Plus Sparse Matrix Decomposition
    Rahmani, Mostafa
    Atia, George K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) : 2004 - 2019
  • [47] Discriminative transfer regression for low-rank and sparse subspace learning
    Liu, Zhonghua
    Ou, Weihua
    Liu, Jinbo
    Zhang, Kaibing
    Lai, Zhihui
    Xiong, Hao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [48] The rate of convergence for sparse and low-rank quantile trace regression
    Tan, Xiangyong
    Peng, Ling
    Xiao, Peiwen
    Liu, Qing
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2023, 79
  • [49] Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
    Ahmed, Talal
    Raja, Haroon
    Bajwa, Waheed U.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 944 - 966
  • [50] LOW-RANK, SPARSE MATRIX DECOMPOSITION AND GROUP SPARSE CODING FOR IMAGE CLASSIFICATION
    Zhang, Lihe
    Ma, Chen
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 669 - 672