Matrix covariates regression with simultaneously low rank and row(column) sparse parameter

被引:0
|
作者
Zhao, Junlong [1 ]
Zhan, Shushi [1 ]
Niu, Lu [1 ]
机构
[1] Beihang Univ, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Matrix covariates; low rank; sparse;
D O I
10.1109/ICICTA.2015.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the estimation of the parameters in the regression model with matrix covariates, where the matrix parameter is simultaneously low rank and row(column) sparse. A commonly used way is to reformulate the parameter as the sum of rank one matrix. This approach usually involves nonconvex optimization and the global solution is not guaranteed. In this paper, we propose a new method formulating a convex optimization problem. An alternative direction method of multipliers (ADMM) algorithm is proposed to solve this convex optimization problem. Simulation shows the effectiveness of our algorithm.
引用
收藏
页码:542 / 546
页数:5
相关论文
共 50 条
  • [21] Co-Design of Sparse Output Feedback and Row/Column-Sparse Output Matrix
    Lin, Fu
    Adetola, Veronica
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4359 - 4364
  • [22] Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices
    Oymak, Samet
    Jalali, Amin
    Fazel, Maryam
    Eldar, Yonina C.
    Hassibi, Babak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) : 2886 - 2908
  • [23] Optimal Denoising of Simultaneously Sparse and Low Rank Matrices in High Dimensions
    Buja, Andreas
    Ma, Zongming
    Yang, Dan
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 445 - 447
  • [24] GRAPH REFINEMENT VIA SIMULTANEOUSLY LOW-RANK AND SPARSE APPROXIMATION
    Zhang, Zhenyue
    Zhai, Zheng
    Li, Limin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1525 - A1553
  • [25] Adaptive Huber trace regression with low-rank matrix parameter via nonconvex regularization
    Tan, Xiangyong
    Peng, Ling
    Lian, Heng
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2024, 85
  • [26] Low rank matrix recovery with adversarial sparse noise*
    Xu, Hang
    Li, Song
    Lin, Junhong
    INVERSE PROBLEMS, 2022, 38 (03)
  • [27] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [28] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [29] Low-Rank and Sparse Matrix Completion for Recommendation
    Zhao, Zhi-Lin
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 3 - 13
  • [30] SCOPE: signal compensation for low-rank plus sparse matrix decomposition for fast parameter mapping
    Zhu, Yanjie
    Liu, Yuanyuan
    Ying, Leslie
    Peng, Xi
    Wang, Yi-Xiang J.
    Yuan, Jing
    Liu, Xin
    Liang, Dong
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (18):