Thermal Stability of Volatiles in the North Polar Region of Mercury

被引:107
|
作者
Paige, David A. [1 ]
Siegler, Matthew A. [1 ,2 ]
Harmon, John K. [3 ]
Neumann, Gregory A. [4 ]
Mazarico, Erwan M. [4 ]
Smith, David E. [5 ]
Zuber, Maria T. [5 ]
Harju, Ellen [1 ]
Delitsky, Mona L. [6 ]
Solomon, Sean C. [7 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Natl Astron & Ionosphere Ctr, Arecibo, PR 00612 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[6] Calif Specialty Engn, Flintridge, CA 91012 USA
[7] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA
[8] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
关键词
COMET HALLEY; POLES; ICE; DEPOSITS; WATER; MOON;
D O I
10.1126/science.1231106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal models for the north polar region of Mercury, calculated from topographic measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice. MESSENGER measurements of near-infrared surface reflectance indicate bright surfaces in the coldest areas where water ice is predicted to be stable at the surface, and dark surfaces within and surrounding warmer areas where water ice is predicted to be stable only in the near subsurface. We propose that the dark surface layer is a sublimation lag deposit that may be rich in impact-derived organic material.
引用
收藏
页码:300 / 303
页数:4
相关论文
共 50 条
  • [41] New Constraints on the Volatile Deposit in Mercury's North Polar Crater, Prokofiev
    Barker, Michael K.
    Chabot, Nancy L.
    Mazarico, Erwan
    Siegler, Matthew A.
    Martinez-Camacho, Jose M.
    Hamill, Colin D.
    Bertone, Stefano
    PLANETARY SCIENCE JOURNAL, 2022, 3 (08):
  • [42] Thermal stability of polyethylene terephthalate (PET): Oligomer distribution and formation of volatiles
    Freire, MTD
    Damant, AP
    Castle, L
    Reyes, FGR
    PACKAGING TECHNOLOGY AND SCIENCE, 1999, 12 (01) : 29 - 36
  • [43] Polar Night: A lunar volatiles expedition
    Mosher, Todd J.
    Lucey, Paul
    ACTA ASTRONAUTICA, 2006, 59 (8-11) : 585 - 592
  • [44] Polar Night: A lunar volatiles expedition
    Mosher, TJ
    Lucey, P
    PROCEEDINGS OF THE FIFTH IAA INTERNATIONAL CONFERENCE ON LOW-COST PLANETARY MISSIONS, 2003, 542 : 35 - 41
  • [45] Thermal stability limits of polar LaTaO4
    Titov, YA
    Sych, AM
    Kapshuk, AA
    INORGANIC MATERIALS, 1998, 34 (05) : 496 - 498
  • [46] On the chemistry of mantle and magmatic volatiles on Mercury
    Zolotov, Mikhail Yu.
    ICARUS, 2011, 212 (01) : 24 - 41
  • [47] The migration of volatiles on the surfaces of Mercury and the Moon
    Butler, BJ
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1997, 102 (E8) : 19283 - 19291
  • [48] Thermal stability and adsorption of mercury compounds in fly ash
    Zhong J.
    Li F.
    Fan J.
    Open Fuels and Energy Science Journal, 2016, 9 : 114 - 125
  • [49] Species and Thermal Stability of Mercury Captured by Fly Ashes
    Gao, Zhengyang
    Ding, Yi
    Han, Wentao
    Hu, Hongxiu
    Lv, Shaokun
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (02) : 460 - 467
  • [50] THE THERMAL-STABILITY OF WATER ICE AT THE POLES OF MERCURY
    PAIGE, DA
    WOOD, SE
    VASAVADA, AR
    SCIENCE, 1992, 258 (5082) : 643 - 646