Thermal Stability of Volatiles in the North Polar Region of Mercury

被引:107
|
作者
Paige, David A. [1 ]
Siegler, Matthew A. [1 ,2 ]
Harmon, John K. [3 ]
Neumann, Gregory A. [4 ]
Mazarico, Erwan M. [4 ]
Smith, David E. [5 ]
Zuber, Maria T. [5 ]
Harju, Ellen [1 ]
Delitsky, Mona L. [6 ]
Solomon, Sean C. [7 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Natl Astron & Ionosphere Ctr, Arecibo, PR 00612 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[6] Calif Specialty Engn, Flintridge, CA 91012 USA
[7] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA
[8] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
关键词
COMET HALLEY; POLES; ICE; DEPOSITS; WATER; MOON;
D O I
10.1126/science.1231106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal models for the north polar region of Mercury, calculated from topographic measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice. MESSENGER measurements of near-infrared surface reflectance indicate bright surfaces in the coldest areas where water ice is predicted to be stable at the surface, and dark surfaces within and surrounding warmer areas where water ice is predicted to be stable only in the near subsurface. We propose that the dark surface layer is a sublimation lag deposit that may be rich in impact-derived organic material.
引用
收藏
页码:300 / 303
页数:4
相关论文
共 50 条
  • [21] ARCTIC OCEAN AND MARINE SCIENCE IN NORTH POLAR REGION
    MOLLOY, AE
    OCEANS, 1969, 1 (02): : 66 - &
  • [22] M-STARS IN NORTH GALACTIC POLAR REGION
    CLUBE, SVM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 184 (02) : 553 - 558
  • [23] Seasonal variability in winds in the north polar region of Mars
    Smith, Isaac B.
    Spiga, Aymeric
    ICARUS, 2018, 308 : 188 - 196
  • [24] The thermal impact of the self-heating effect on airless bodies. The case of Mercury's north polar craters
    Cambianica, Pamela
    Simioni, Emanuele
    Cremonese, Gabriele
    Bertoli, Silvia
    Martellato, Elena
    Lucchetti, Alice
    Pajola, Maurizio
    Re, Cristina
    Tullo, Adriano
    Massironi, Matteo
    PLANETARY AND SPACE SCIENCE, 2024, 253
  • [25] PROPOSED SLEDGE EXPEDITION ACROSS THE NORTH POLAR REGION
    Harrison, Alfred H.
    GEOGRAPHICAL JOURNAL, 1909, 33 (06): : 689 - 697
  • [26] Sunspots, the QBO, and the stratosphere in the north polar region:: An update
    Labitzke, K.
    Kunze, M.
    Broennimann, S.
    CLIMATE VARIABILITY AND EXTREMES DURING THE PAST 100 YEARS, 2008, 33 : 347 - +
  • [27] Distribution of hydrated minerals in the north polar region of Mars
    Horgan, B. H.
    Bell, J. F., III
    Dobrea, E. Z. Noe
    Cloutis, E. A.
    Bailey, D. T.
    Craig, M. A.
    Roach, L. H.
    Mustard, J. F.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114
  • [28] Galileo stereo topography of the lunar north polar region
    Schenk, PM
    Bussey, DB
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (23) : 1 - 4
  • [29] EVOLUTION OF DUST DEPOSITS IN THE MARTIAN NORTH POLAR REGION
    SQUYRES, SW
    ICARUS, 1979, 40 (02) : 244 - 261
  • [30] THERMAL STRUCTURE OF THE MESOPAUSE REGION AT POLAR LATITUDES
    LUBKEN, FJ
    VONZAHN, U
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1991, 96 (D11) : 20841 - 20857