Bifurcations of limit cycles from infinity for a class of quintic polynomial system

被引:29
|
作者
Huang, W [1 ]
Liu, Y
机构
[1] Guilin Univ Elect Technol, Dept 7, Guilin 541004, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 04期
关键词
infinity; focal value; singular point value; limit cycle;
D O I
10.1016/j.bulsci.2004.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we use an indirect method to investigate bifurcations of limit cycles at infinity for a class of quintic polynomial system, in which the problem for bifurcations of limit cycles from infinity be transferred into that from the origin. By the computation of singular point values, the conditions of the origin (correspondingly, infinity) to be the highest degree fine focus are derived. Consequently, we construct a quintic system with a small parameter and eight normal parameters, which can bifurcates I to 8 limit cycles from infinity respectively, when let normal parameters be suitable values. The positions of these limit cycles without constructing Poincare cycle fields can be pointed out exactly. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 50 条
  • [31] Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop
    Hong, Z
    Zhang, TH
    Chen, WC
    JOURNAL OF COMPLEXITY, 2004, 20 (04) : 544 - 560
  • [32] Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop
    Asheghi, Rasol
    Zangeneh, Hamid R. Z.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (10) : 2957 - 2976
  • [33] Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities
    Benterki, Rebiha
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) : 16 - 22
  • [34] Bifurcation of limit cycles at infinity in piecewise polynomial systems
    Chen, Ting
    Huang, Lihong
    Yu, Pei
    Huang, Wentao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 82 - 106
  • [35] BIFURCATIONS OF LIMIT CYCLES AND CENTER PROBLEM FOR A CLASS OF CUBIC NILPOTENT SYSTEM
    Liu, Yirong
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (08): : 2579 - 2584
  • [36] Bifurcation of limit cycles at the equator for a class of polynomial differential system
    Zhang, Qi
    Gui Weihua
    Liu, Yirong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 1042 - 1047
  • [37] The number of limit cycles for a class of quintic Hamiltonian systems under quintic perturbations
    Chen, GW
    Wu, YB
    Yang, XN
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 : 37 - 53
  • [38] Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop (II)
    Asheghi, Rasoul
    Zangeneh, Hamid R. Z.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 4143 - 4162
  • [39] Bifurcations of limit cycles in a cubic system
    Zhang, TH
    Zang, H
    Han, MA
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 629 - 638
  • [40] Limit cycle bifurcations by perturbing a class of planar quintic vector fields
    Xiong, Yanqin
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10964 - 10994