Bifurcations of limit cycles from infinity for a class of quintic polynomial system

被引:29
|
作者
Huang, W [1 ]
Liu, Y
机构
[1] Guilin Univ Elect Technol, Dept 7, Guilin 541004, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 04期
关键词
infinity; focal value; singular point value; limit cycle;
D O I
10.1016/j.bulsci.2004.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we use an indirect method to investigate bifurcations of limit cycles at infinity for a class of quintic polynomial system, in which the problem for bifurcations of limit cycles from infinity be transferred into that from the origin. By the computation of singular point values, the conditions of the origin (correspondingly, infinity) to be the highest degree fine focus are derived. Consequently, we construct a quintic system with a small parameter and eight normal parameters, which can bifurcates I to 8 limit cycles from infinity respectively, when let normal parameters be suitable values. The positions of these limit cycles without constructing Poincare cycle fields can be pointed out exactly. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 50 条
  • [21] Limit cycle bifurcations in a class of quintic Z2-equivariant polynomial systems
    Kong, Xiaona
    Xiong, Yanqin
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1271 - 1281
  • [22] ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIENARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS
    Li, Linlin
    Yang, Junmin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2464 - 2481
  • [23] Bifurcations of limit cycles in equivariant quintic planar vector fields
    Zhao, Liqin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 352 - 375
  • [24] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Gao, Yong-xi
    Wu, Yu-hai
    Tian, Li-xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (02): : 313 - 328
  • [25] Bifurcations of limit cycles for a perturbed quintic Hamiltonian system with four infinite singular points
    Zhou, Hongxian
    Xu, Wei
    Zhao, Xiaoshan
    Zhou, Bingchang
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 686 - 700
  • [26] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Yong-xi Gao
    Yu-hai Wu
    Li-xin Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 313 - 328
  • [27] Bifurcations of Limit Cycles in A Perturbed Quintic Hamiltonian System with Six Double Homoclinic Loops
    Yong-xi Gao Yu-hai Wu Li-xin Tian Department of Mathematics
    ActaMathematicaeApplicataeSinica, 2008, (02) : 313 - 328
  • [28] On the number of limit cycles of a Z4-equivariant quintic polynomial system
    Xu, Weijiao
    Han, Maoan
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3022 - 3034
  • [29] The center conditions and bifurcation of limit cycles at the infinity for a cubic polynomial system
    Zhang, Lina
    Liu, Yirong
    Jiang, Xuejiao
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1360 - 1370
  • [30] Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop
    Zang, H
    Zhang, TH
    Han, MA
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (01): : 71 - 86