Bifurcations of limit cycles from infinity for a class of quintic polynomial system

被引:29
|
作者
Huang, W [1 ]
Liu, Y
机构
[1] Guilin Univ Elect Technol, Dept 7, Guilin 541004, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 04期
关键词
infinity; focal value; singular point value; limit cycle;
D O I
10.1016/j.bulsci.2004.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we use an indirect method to investigate bifurcations of limit cycles at infinity for a class of quintic polynomial system, in which the problem for bifurcations of limit cycles from infinity be transferred into that from the origin. By the computation of singular point values, the conditions of the origin (correspondingly, infinity) to be the highest degree fine focus are derived. Consequently, we construct a quintic system with a small parameter and eight normal parameters, which can bifurcates I to 8 limit cycles from infinity respectively, when let normal parameters be suitable values. The positions of these limit cycles without constructing Poincare cycle fields can be pointed out exactly. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 50 条
  • [1] A quintic polynomial differential system with eleven limit cycles at the infinity
    Zhang, Qi
    Liu, Yirong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (10) : 1518 - 1526
  • [2] THE LIMIT CYCLES OF A CLASS OF QUINTIC POLYNOMIAL VECTOR FIELDS
    Llibre, Jaume
    Salhi, Tayeb
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 141 - 151
  • [3] The number of limit cycles of a quintic polynomial system
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) : 677 - 684
  • [4] Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
    Li Qin ZHAO
    De Ping LI
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (03) : 411 - 422
  • [5] Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
    Zhao, Li Qin
    Li, De Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (03) : 411 - 422
  • [6] Bifurcations of limit cycles from a quintic Hamiltonian system with a heteroclinic cycle
    Li Qin Zhao
    De Ping Li
    Acta Mathematica Sinica, English Series, 2014, 30 : 411 - 422
  • [7] THE SHAPE OF LIMIT CYCLES FOR A CLASS OF QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Wei, Xuemei
    Shui, Shuliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (03): : 291 - 300
  • [8] The limit cycle In a class of quintic polynomial system
    Institute of Applied Mathematics, Guangdong University of Technology, 510 080 Guangzhou, China
    Adv. Modell. Anal. A, 2008, 1-2 (1-11): : 1 - 11
  • [9] The number of limit cycles of a quintic polynomial system with center
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3008 - 3017
  • [10] Limit Cycles for a Discontinuous Quintic Polynomial Differential System
    Huang, Bo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 769 - 792