TORIC GEOMETRY AND GROTHENDIECK RESIDUES

被引:16
|
作者
Gelfond, O. A. [1 ]
Khovanskii, A. G. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Syst Res Inst, Moscow 117901, Russia
[2] Independent Univ Moscow, Moscow, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[4] Russian Acad Sci, Inst Syst Anal, Moscow 117901, Russia
关键词
Grothendieck residues; Newton polyhedra; toric varieties;
D O I
10.17323/1609-4514-2002-2-1-99-112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of n algebraic equations P-1 = ... = P-n = 0 in the torus (C \ 0)(n). It is assumed that the Newton polyhedra of the equations are in a sufficiently general position with respect to one another. Let omega be any rational n-form which is regular on (C \ 0)(n) outside the hypersurface P-1 ... P-n = 0. Formerly we have announced an explicit formula for the sum of the Grothendieck residues of the form omega at all roots of the system of equations. In the present paper this formula is proved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [41] Hofer geometry via toric degeneration
    Kawamoto, Yusuke
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 721 - 762
  • [42] Toric Geometry of the Regular Convex Polyhedra
    Battaglia, Fiammetta
    Prato, Elisa
    JOURNAL OF MATHEMATICS, 2017, 2017
  • [43] Branes at generalized conifolds and toric geometry
    von Unge, R
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (02):
  • [44] Relative rounding in toric and logarithmic geometry
    Nakayama, Chikara
    Ogus, Arthur
    GEOMETRY & TOPOLOGY, 2010, 14 (04): : 2189 - 2241
  • [45] The toric geometry of some Niemeier lattices
    M. Brightwell
    Journal of Geometry, 2004, 81 (1-2) : 15 - 20
  • [46] Toric Contact Geometry in Arbitrary Codimension
    Apostolov, Vestislav
    Calderbank, David M. J.
    Gauduchon, Paul
    Legendre, Eveline
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (08) : 2436 - 2467
  • [47] Toric geometry and the Semple–Nash modification
    Pedro D. González Pérez
    Bernard Teissier
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 1 - 48
  • [48] Nonrational polytopes and fans in toric geometry
    Battaglia, Fiammetta
    Prato, Elisa
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 67 - 86
  • [49] Toric geometry of path signature varieties
    Colmenarejo, Laura
    Galuppi, Francesco
    Michalek, Mateusz
    ADVANCES IN APPLIED MATHEMATICS, 2020, 121
  • [50] CRYSTALS, INSTANTONS AND QUANTUM TORIC GEOMETRY
    Szabo, Richard J.
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 461 - +