TORIC GEOMETRY AND GROTHENDIECK RESIDUES

被引:16
|
作者
Gelfond, O. A. [1 ]
Khovanskii, A. G. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Syst Res Inst, Moscow 117901, Russia
[2] Independent Univ Moscow, Moscow, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[4] Russian Acad Sci, Inst Syst Anal, Moscow 117901, Russia
关键词
Grothendieck residues; Newton polyhedra; toric varieties;
D O I
10.17323/1609-4514-2002-2-1-99-112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of n algebraic equations P-1 = ... = P-n = 0 in the torus (C \ 0)(n). It is assumed that the Newton polyhedra of the equations are in a sufficiently general position with respect to one another. Let omega be any rational n-form which is regular on (C \ 0)(n) outside the hypersurface P-1 ... P-n = 0. Formerly we have announced an explicit formula for the sum of the Grothendieck residues of the form omega at all roots of the system of equations. In the present paper this formula is proved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [21] The geometry of toric hyperkahler varieties
    Konno, Hiroshi
    TORIC TOPOLOGY, 2008, 460 : 241 - 260
  • [22] Diophantine geometry and toric varieties
    Philippon, P
    Sombra, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (07) : 507 - 512
  • [23] A note on toric contact geometry
    Boyer, CP
    Galicki, K
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (04) : 288 - 298
  • [24] Matter from toric geometry
    Candelas, P
    Perevalov, E
    Rajesh, G
    NUCLEAR PHYSICS B, 1998, 519 (1-2) : 225 - 238
  • [25] Scattering amplitudes and toric geometry
    Antonio Amariti
    Davide Forcella
    Journal of High Energy Physics, 2013
  • [26] TORIC GEOMETRY OF CONVEX QUADRILATERALS
    Legendre, Eveline
    JOURNAL OF SYMPLECTIC GEOMETRY, 2011, 9 (03) : 343 - 385
  • [27] Scattering amplitudes and toric geometry
    Amariti, Antonio
    Forcella, Davide
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [28] Discriminants, Polytopes, and Toric Geometry
    Piene, Ragni
    MATHEMATICS IN THE 21ST CENTURY, 2015, 98 : 151 - 162
  • [29] Secant Cumulants and Toric Geometry
    Michalek, Mateusz
    Oeding, Luke
    Zwiernik, Piotr
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) : 4019 - 4063
  • [30] Toric geometry of cuts and splits
    Sturmfels, Bernd
    Sullivant, Seth
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 : 689 - 709