TORIC GEOMETRY AND GROTHENDIECK RESIDUES

被引:16
|
作者
Gelfond, O. A. [1 ]
Khovanskii, A. G. [2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Syst Res Inst, Moscow 117901, Russia
[2] Independent Univ Moscow, Moscow, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[4] Russian Acad Sci, Inst Syst Anal, Moscow 117901, Russia
关键词
Grothendieck residues; Newton polyhedra; toric varieties;
D O I
10.17323/1609-4514-2002-2-1-99-112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of n algebraic equations P-1 = ... = P-n = 0 in the torus (C \ 0)(n). It is assumed that the Newton polyhedra of the equations are in a sufficiently general position with respect to one another. Let omega be any rational n-form which is regular on (C \ 0)(n) outside the hypersurface P-1 ... P-n = 0. Formerly we have announced an explicit formula for the sum of the Grothendieck residues of the form omega at all roots of the system of equations. In the present paper this formula is proved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [1] On the Grothendieck Groups of Toric Stacks
    Hua, Zheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 665 - 670
  • [2] Toric varieties with huge Grothendieck group
    Gubeladze, J
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 117 - 124
  • [3] Toric residues
    Cox, DA
    ARKIV FOR MATEMATIK, 1996, 34 (01): : 73 - 96
  • [4] Newton polyhedra and grothendieck residues
    Gelfond, OA
    Khovanskii, AG
    DOKLADY AKADEMII NAUK, 1996, 350 (03) : 298 - 300
  • [5] Residues in toric varieties
    Cattani, E
    Cox, D
    Dickenstein, A
    COMPOSITIO MATHEMATICA, 1997, 108 (01) : 35 - 76
  • [6] Computation of toric residues
    Zhang, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (07): : 639 - 644
  • [7] Tropical toric geometry
    Kajiwara, Takeshi
    TORIC TOPOLOGY, 2008, 460 : 197 - 207
  • [8] The geometry of toric schemes
    Rohrer, Fred
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 700 - 708
  • [9] On the geometry of toric arrangements
    De Concini, C
    Procesi, C
    TRANSFORMATION GROUPS, 2005, 10 (3-4) : 387 - 422
  • [10] Versality in toric geometry
    Altmann, Klaus
    Constantinescu, Alexandru
    Filip, Matej
    JOURNAL OF ALGEBRA, 2022, 609 : 1 - 43