Machine Learning-Assisted PAPR Reduction in Massive MIMO

被引:15
|
作者
Kalinov, Aleksei [1 ]
Bychkov, Roman [1 ]
Ivanov, Andrey [1 ]
Osinsky, Alexander [1 ]
Yarotsky, Dmitry [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 143026, Russia
关键词
PAPR reduction; machine learning; LOW-COMPLEXITY; OFDM; SCHEME;
D O I
10.1109/LWC.2020.3036909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we propose a machine learning (ML) approach to peak-to-average power ratio (PAPR) reduction in the downlink channel of the digital Massive Multiple Input Multiple Output (MIMO) system with orthogonal frequency division multiplexing (OFDM) signal. Naturally, substantial PAPR reduction is achieved when the noise after PAPR reduction is distributed in both frequency and spatial domains following the maximum allowed error vector magnitude (EVM). However, such an approach requires time-consuming manual tuning of hyperparameters for each scenario. To overcome this problem, we propose to compute an optimal hyperparameter function. Then we propose an efficient approximation for this function to enable the PAPR reduction based on the classical ML approaches.
引用
收藏
页码:537 / 541
页数:5
相关论文
共 50 条
  • [41] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    PHARMACEUTICS, 2022, 14 (02)
  • [42] Machine Learning-Assisted Design of Advanced Polymeric Materials
    Gao, Liang
    Lin, Jiaping
    Wang, Liquan
    Du, Lei
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 571 - 584
  • [43] Machine Learning-Assisted System for Thyroid Nodule Diagnosis
    Zhang, Bin
    Tian, Jie
    Pei, Shufang
    Chen, Yubing
    He, Xin
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Huang, Wenhui
    Cong, Shuzhen
    Zhang, Shuixing
    THYROID, 2019, 29 (06) : 858 - 867
  • [44] Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
    Yang, Jason
    Li, Francesca-Zhoufan
    Arnold, Frances H.
    ACS CENTRAL SCIENCE, 2024, 10 (02) : 226 - 241
  • [45] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) : 1142 - 1155
  • [46] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [47] An Efficient Bayesian PAPR Reduction Method for OFDM-Based Massive MIMO Systems
    Bao, Hengyao
    Fang, Jun
    Chen, Zhi
    Li, Hongbin
    Li, Shaoqian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (06) : 4183 - 4195
  • [48] Machine Learning-Assisted Microfluidic Synthesis of Perovskite Quantum Dots
    Chen, Gaoyu
    Zhu, Xia
    Xing, Chenyu
    Wang, Yongkai
    Xu, Xiangxing
    Bao, Jianchun
    Huang, Jinghan
    Zhao, Yurong
    Wang, Xuan
    Zhou, Xiuqing
    Du, Xiuli
    Wang, Xun
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (01):
  • [49] Machine learning-assisted macro simulation for yard arrival prediction
    Minbashi, Niloofar
    Sipila, Hans
    Palmqvist, Carl -William
    Bohlin, Markus
    Kordnejad, Behzad
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2023, 25
  • [50] Machine Learning-assisted GNSS Interference Monitoring through Crowdsourcing
    Raichur, Nisha Lakshmana
    Brieger, Tobias
    Jdidi, Dorsaf
    Feigl, Tobias
    van der Merwe, J. Rossouw
    Ghimire, Birendra
    Ott, Felix
    Rügamer, Alexander
    Felber, Wolfgang
    35th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2022, 2022, 2 : 1119 - 1143