Machine Learning-Assisted PAPR Reduction in Massive MIMO

被引:15
|
作者
Kalinov, Aleksei [1 ]
Bychkov, Roman [1 ]
Ivanov, Andrey [1 ]
Osinsky, Alexander [1 ]
Yarotsky, Dmitry [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 143026, Russia
关键词
PAPR reduction; machine learning; LOW-COMPLEXITY; OFDM; SCHEME;
D O I
10.1109/LWC.2020.3036909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we propose a machine learning (ML) approach to peak-to-average power ratio (PAPR) reduction in the downlink channel of the digital Massive Multiple Input Multiple Output (MIMO) system with orthogonal frequency division multiplexing (OFDM) signal. Naturally, substantial PAPR reduction is achieved when the noise after PAPR reduction is distributed in both frequency and spatial domains following the maximum allowed error vector magnitude (EVM). However, such an approach requires time-consuming manual tuning of hyperparameters for each scenario. To overcome this problem, we propose to compute an optimal hyperparameter function. Then we propose an efficient approximation for this function to enable the PAPR reduction based on the classical ML approaches.
引用
收藏
页码:537 / 541
页数:5
相关论文
共 50 条
  • [31] Machine Learning-Assisted Simulations and Predictions for Battery Interfaces
    Sun, Zhaojun
    Li, Xin
    Wu, Yiming
    Gu, Qilin
    Zheng, Shiyou
    ADVANCED INTELLIGENT SYSTEMS, 2025,
  • [32] Interpretable machine learning-assisted screening of perovskite oxides
    Zhao, Jie
    Wang, Xiaoyan
    Li, Haobo
    Xu, Xiaoyong
    RSC ADVANCES, 2024, 14 (06) : 3909 - 3922
  • [33] Machine learning-assisted discovery of flow reactor designs
    Tom Savage
    Nausheen Basha
    Jonathan McDonough
    James Krassowski
    Omar Matar
    Ehecatl Antonio del Rio Chanona
    Nature Chemical Engineering, 2024, 1 (8): : 522 - 531
  • [34] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [35] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [36] Machine Learning-Assisted Decision Making in Orthopaedic Oncology
    Rizk, Paul A.
    Gonzalez, Marcos R.
    Galoaa, Bishoy M.
    Girgis, Andrew G.
    Van Der Linden, Lotte
    Chang, Connie Y.
    Lozano-Calderon, Santiago A.
    JBJS REVIEWS, 2024, 12 (07)
  • [37] Machine learning-assisted global optimization of photonic devices
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    NANOPHOTONICS, 2021, 10 (01) : 371 - 383
  • [38] Machine learning-assisted synthetic biology of cyanobacteria and microalgae
    Jin, Weijia
    Wang, Fangzhong
    Chen, Lei
    Zhang, Weiwen
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [39] Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides
    Bhangu, Sukhvir Kaur
    Welch, Nicholas
    Lewis, Morgan
    Li, Fanyi
    Gardner, Brint
    Thissen, Helmut
    Kowalczyk, Wioleta
    SMALL SCIENCE, 2025,
  • [40] Advances in PAPR Reduction for OFDM Systems with Machine Learning
    Anoh, Kelvin
    ICFNDS'18: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND DISTRIBUTED SYSTEMS, 2018,