Semiparametric model for covariance regression analysis

被引:2
|
作者
Liu, Jin [1 ,2 ]
Ma, Yingying [3 ]
Wang, Hansheng [4 ]
机构
[1] Nankai Univ, LPMC, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Nankai Univ, KLMDASR, Tianjin, Peoples R China
[3] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China
[4] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Adjacency matrix; Covariance estimation; Covariance regression; Information criterion; Time varying coefficient; HIGH-DIMENSIONAL COVARIANCE; TIME-SERIES MODELS; MATRIX ESTIMATION; SELECTION; INFERENCE; RATES;
D O I
10.1016/j.csda.2019.106815
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimating covariance matrices is an important research topic in statistics and finance. A semiparametric model for covariance matrix estimation is proposed. Specifically, the covariance matrix is modeled as a polynomial function of the symmetric adjacency matrix with time varying parameters. The asymptotic properties for the time varying coefficient and the associated semiparametric covariance estimators are established. A Bayesian information criterion to select the order of the polynomial function is also investigated. Simulation studies and an empirical example are presented to illustrate the usefulness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Model selection in semiparametric expectile regression
    Spiegel, Elmar
    Sobotka, Fabian
    Kneib, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3008 - 3038
  • [22] Ridge estimation of a semiparametric regression model
    Hu, HC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 215 - 222
  • [23] Semiparametric model selection with applications to regression
    Zhao, Zhanlue
    Chen, Huimin
    Li, X. Rong
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 741 - 746
  • [24] Semiparametric regression with kernel error model
    Yuan, Ao
    de Gooijer, Jan G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (04) : 841 - 869
  • [25] Model selection in multivariate semiparametric regression
    Li, Zhuokai
    Liu, Hai
    Tu, Wanzhu
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (10) : 3026 - 3038
  • [26] Semiparametric estimation of a truncated regression model
    Chen, Songnian
    Zhou, Xianbo
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 297 - 304
  • [27] A semiparametric proportional odds regression model for the analysis of current status data
    Rossini, AJ
    Tsiatis, AA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) : 713 - 721
  • [28] Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function
    Jia, Shengji
    Zhang, Chunming
    Wu, Hulin
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (04) : 867 - 886
  • [29] Sensitivity analysis in semiparametric regression models
    Fung, WK
    Zhu, ZY
    Wei, BC
    MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 233 - 240
  • [30] On semiparametric regression in functional data analysis
    Ling, Nengxiang
    Vieu, Philippe
    Wiley Interdisciplinary Reviews: Computational Statistics, 2021, 13 (06)