Semiparametric regression with kernel error model

被引:21
|
作者
Yuan, Ao
de Gooijer, Jan G.
机构
[1] Univ Amsterdam, Dept Quantitat Econ, NL-1018 WB Amsterdam, Netherlands
[2] Howard Univ, Stat Genet & Bioinformat Unit, Washington, DC USA
关键词
information bound; kernel density estimator; maximum likelihood estimate; nonlinear regression; semiparametric model; U-statistic; Wilks property;
D O I
10.1111/j.1467-9469.2006.00531.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate root n and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.
引用
收藏
页码:841 / 869
页数:29
相关论文
共 50 条
  • [1] Recursive kernel estimator in a semiparametric regression model
    Nkou, Emmanuel De Dieu
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (01) : 145 - 171
  • [2] Semiparametric regression for measurement error model with heteroscedastic error
    Li, Mengyan
    Ma, Yanyuan
    Li, Runze
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 320 - 338
  • [3] Strong consistency of kernel estimator in a semiparametric regression model
    Nkou, Emmanuel de Dieu
    Nkiet, Guy Martial
    STATISTICS, 2019, 53 (06) : 1289 - 1305
  • [4] Semiparametric maximum likelihood for measurement error model regression
    Schafer, DW
    BIOMETRICS, 2001, 57 (01) : 53 - 61
  • [5] A mixed model approach to measurement error in semiparametric regression
    Hattab, Mohammad W.
    Ruppert, David
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [6] A mixed model approach to measurement error in semiparametric regression
    Mohammad W. Hattab
    David Ruppert
    Statistics and Computing, 2021, 31
  • [7] Joint semiparametric kernel network regression
    Kim, Byung-Jun
    Kim, Inyoung
    STATISTICS IN MEDICINE, 2023, 42 (28) : 5247 - 5265
  • [8] Nonlinear wavelet smoothing of error density in a semiparametric regression model
    Chai G.
    Xu K.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (3) : 329 - 336
  • [9] Semiparametric multiple kernel estimators and model diagnostics for count regression functions
    Djerroud, Lamia
    Kiesse, Tristan Senga
    Adjabi, Smail
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2131 - 2157
  • [10] Multivariable Semiparametric Regression Model with Combined Estimator of Fourier Series and Kernel
    Nisa, Khaerun
    Budiantara, I. Nyoman
    Rumiati, Agnes Tuti
    3RD INTERNATIONAL SEMINAR ON SCIENCES SCIENCES ON PRECISION AND SUSTAINABLE AGRICULTURE (ISS-2016), 2017, 58