Compact learning for multi-label classification

被引:14
|
作者
Lv, Jiaqi [1 ,2 ]
Wu, Tianran [1 ,2 ]
Peng, Chenglun [1 ,2 ]
Liu, Yunpeng [1 ,2 ]
Xu, Ning [1 ,2 ]
Geng, Xin [1 ,2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Multi-label classification; Label compression; Compact learning; REDUCTION;
D O I
10.1016/j.patcog.2021.107833
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. It confronts with the great challenge for the exploration of the latent label relationship and the intrinsic correlation between feature and la bel spaces. MLC gave rise to a framework named label compression (LC) to obtain a compact space for efficient learning. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, which may result in performance degradation instead. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept that does not rigidly adhere to some specific embedding methods, and is independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Active Learning in Multi-label Classification of Bioacoustic Data
    Kath, Hannes
    Gouvea, Thiago S.
    Sonntag, Daniel
    KI 2024: ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2024, 2024, 14992 : 114 - 127
  • [42] Multi-label classification with weak labels by learning label correlation and label regularization
    Xiaowan Ji
    Anhui Tan
    Wei-Zhi Wu
    Shenming Gu
    Applied Intelligence, 2023, 53 : 20110 - 20133
  • [43] A model for multi-label classification and ranking of learning objects
    Lopez, Vivian F.
    de la Prieta, Fernando
    Ogihara, Mitsunori
    Wong, Ding Ding
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8878 - 8884
  • [44] An Improved Multi-label Classification Ensemble Learning Algorithm
    Fu, Zhongliang
    Wang, Lili
    Zhang, Danpu
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 243 - 252
  • [45] Deep Learning for Multi-Label Land Cover Classification
    Karalas, Konstantinos
    Tsagkatakis, Grigorios
    Zervakis, Michalis
    Tsakalides, Panagiotis
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [46] Effective Multi-Label Active Learning for Text Classification
    Yang, Bishan
    Sun, Jian-Tao
    Wang, Tengjiao
    Chen, Zheng
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 917 - 925
  • [47] Hierarchical Transfer Learning for Multi-label Text Classification
    Banerjee, Siddhartha
    Akkaya, Cem
    Perez-Sorrosal, Francisco
    Tsioutsiouliklis, Kostas
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 6295 - 6300
  • [48] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [49] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [50] Multi-label SVM active learning for image classification
    Li, XC
    Wang, L
    Sung, E
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2207 - 2210