Compact learning for multi-label classification

被引:14
|
作者
Lv, Jiaqi [1 ,2 ]
Wu, Tianran [1 ,2 ]
Peng, Chenglun [1 ,2 ]
Liu, Yunpeng [1 ,2 ]
Xu, Ning [1 ,2 ]
Geng, Xin [1 ,2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Multi-label classification; Label compression; Compact learning; REDUCTION;
D O I
10.1016/j.patcog.2021.107833
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. It confronts with the great challenge for the exploration of the latent label relationship and the intrinsic correlation between feature and la bel spaces. MLC gave rise to a framework named label compression (LC) to obtain a compact space for efficient learning. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, which may result in performance degradation instead. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept that does not rigidly adhere to some specific embedding methods, and is independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Active learning for hierarchical multi-label classification
    Felipe Kenji Nakano
    Ricardo Cerri
    Celine Vens
    Data Mining and Knowledge Discovery, 2020, 34 : 1496 - 1530
  • [22] Compositional metric learning for multi-label classification
    Sun, Yan-Ping
    Zhang, Min-Ling
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (05)
  • [23] A System for Multi-label Classification of Learning Objects
    Lopez Batista, Vivian F.
    Prieta Pintado, Fernando
    Belen Gil, Ana
    Rodriguez, Sara
    Moreno, Maria N.
    SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 6TH INTERNATIONAL CONFERENCE SOCO 2011, 2011, 87 : 523 - 531
  • [24] Supervised representation learning for multi-label classification
    Huang, Ming
    Zhuang, Fuzhen
    Zhang, Xiao
    Ao, Xiang
    Niu, Zhengyu
    Zhang, Min-Ling
    He, Qing
    MACHINE LEARNING, 2019, 108 (05) : 747 - 763
  • [25] Multi-label Active Learning for Image Classification
    Wu, Jian
    Sheng, Victor S.
    Zhang, Jing
    Zhao, Pengpeng
    Cui, Zhiming
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5227 - 5231
  • [26] Online Metric Learning for Multi-Label Classification
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4012 - 4019
  • [27] Multi-Label Active Learning with Label Correlation for Image Classification
    Ye, Chen
    Wu, Jian
    Sheng, Victor S.
    Zhao, Pengpeng
    Cui, Zhiming
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3437 - 3441
  • [28] Multi-label Iterated Learning for Image Classification with Label Ambiguity
    Rajeswar, Sai
    Rodriguez, Pau
    Singhal, Soumye
    Vazquez, David
    Courville, Aaron
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4773 - 4783
  • [29] Multi-label classification with weak labels by learning label correlation and label regularization
    Ji, Xiaowan
    Tan, Anhui
    Wu, Wei-Zhi
    Gu, Shenming
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20110 - 20133
  • [30] Deep Learning for Extreme Multi-label Text Classification
    Liu, Jingzhou
    Chang, Wei-Cheng
    Wu, Yuexin
    Yang, Yiming
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 115 - 124