On the invariance of time-dependent Hamilton's functions

被引:0
|
作者
Ghori, QK [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
conservation law; Poincare's formalism; infinitesimal transformation;
D O I
10.1007/s10409-005-0049-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The general framework of Poincare's formalism is used to establish the connection between conservation laws and invariance properties of Hamilton's function under infinitesimal transformations when these laws and the Hamiltonian are time-dependent. An example illustrative of the theory is also considered.
引用
收藏
页码:511 / 513
页数:3
相关论文
共 50 条
  • [41] REMARKS ON HAMILTON-JACOBI EQUATIONS WITH MEASURABLE TIME-DEPENDENT HAMILTONIANS
    LIONS, PL
    PERTHAME, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (05) : 613 - 621
  • [42] Quantum version of Hamilton-Jacobi theory for time-dependent systems
    Sakoda, S
    Omote, M
    Kamefuchi, S
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 601 - 604
  • [43] On the gauge invariance of nonperturbative electronic dynamics using the time-dependent Hartree-Fock and time-dependent Kohn-Sham
    Ding, Feizhi
    Liang, Wenkel
    Chapman, Craig T.
    Isborn, Christine M.
    Li, Xiaosong
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (16):
  • [44] Learning Green’s functions associated with time-dependent partial differential equations
    Boullé, Nicolas
    Kim, Seick
    Shi, Tianyi
    Townsend, Alex
    Journal of Machine Learning Research, 2022, 23
  • [45] Deriving the time-dependent dyadic Green's functions in conductive anisotropic media
    Yakhno, Valery G.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (03) : 332 - 342
  • [46] Learning Green's functions associated with time-dependent partial differential equations
    Boulle, Nicolas
    Kim, Seick
    Shi, Tianyi
    Townsend, Alex
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [47] The computation of the time-dependent magnetic and electric matrix Green's functions in a parallelepiped
    Yakhno, V. G.
    Ersoy, S.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (20) : 6332 - 6350
  • [48] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    LIU QiHuai
    LI XinXiang
    YAN Jun
    Science China(Mathematics), 2016, 59 (05) : 875 - 890
  • [49] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    Liu QiHuai
    Li XinXiang
    Yan Jun
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (05) : 875 - 890
  • [50] Large time behavior of solutions for a class of time-dependent Hamilton-Jacobi equations
    QiHuai Liu
    XinXiang Li
    Jun Yan
    Science China Mathematics, 2016, 59 : 875 - 890