On the invariance of time-dependent Hamilton's functions

被引:0
|
作者
Ghori, QK [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
conservation law; Poincare's formalism; infinitesimal transformation;
D O I
10.1007/s10409-005-0049-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The general framework of Poincare's formalism is used to establish the connection between conservation laws and invariance properties of Hamilton's function under infinitesimal transformations when these laws and the Hamiltonian are time-dependent. An example illustrative of the theory is also considered.
引用
收藏
页码:511 / 513
页数:3
相关论文
共 50 条
  • [21] On the generalized canonical equations of Hamilton for a time-dependent mass particle
    Casetta, Leonardo
    Pesce, Celso P.
    ACTA MECHANICA, 2012, 223 (12) : 2723 - 2726
  • [22] Hamilton-Jacobi quantization of systems with time-dependent constraints
    Baleanu, D
    Güler, Y
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (05) : 861 - 866
  • [23] Time-dependent Green's functions for an anisotropic bimaterial with viscous interface
    Wang, X.
    Pan, E.
    Feng, W. J.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2007, 26 (05) : 901 - 908
  • [24] GREEN'S FUNCTIONS AND TRANSITION AMPLITUDES FOR TIME-DEPENDENT LINEAR HARMONIC OSCILLATOR WITH LINEAR TIME-DEPENDENT TERMS ADDED TO THE HAMILTONIAN
    Rashid, M. A.
    Farooq, M. U.
    PROCEEDINGS OF THE 13TH REGIONAL CONFERENCE ON MATHEMATICAL PHYSICS, 2013, : 85 - 93
  • [25] Invariance for Stochastic Differential Systems with Time-dependent Constraining Sets
    Marius APETRII
    MihaelaHanako MATCOVSCHI
    Octavian PASTRAVANU
    Eduard ROTENSTEIN
    ActaMathematicaSinica, 2015, 31 (07) : 1171 - 1188
  • [26] EXPLICITLY TIME-DEPENDENT COORDINATE TRANSFORMATIONS AND GAUGE-INVARIANCE
    TAKAYA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (06): : 2030 - 2031
  • [27] Invariance for Stochastic Differential Systems with Time-dependent Constraining Sets
    Marius APETRII
    Mihaela-Hanako MATCOVSCHI
    Octavian PASTRAVANU
    Eduard ROTENSTEIN
    Acta Mathematica Sinica,English Series, 2015, (07) : 1171 - 1188
  • [28] INVARIANCE OF THE GEOMETRICAL PHASE UNDER TIME-DEPENDENT UNITARY TRANSFORMATIONS
    KENDRICK, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04): : 885 - 897
  • [29] Invariance for Stochastic Differential Systems with Time-dependent Constraining Sets
    Apetrii, Marius
    Matcovschi, Mihaela-Hanako
    Pastravanu, Octavian
    Rotenstein, Eduard
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (07) : 1171 - 1188
  • [30] Invariance for stochastic differential systems with time-dependent constraining sets
    Marius Apetrii
    Mihaela-Hanako Matcovschi
    Octavian Păstrăvanu
    Eduard Rotenstein
    Acta Mathematica Sinica, English Series, 2015, 31 : 1171 - 1188