Morphological phases of crumpled wire

被引:47
|
作者
Stoop, N. [1 ]
Wittel, F. K. [1 ]
Herrmann, H. J. [1 ]
机构
[1] ETH, HIF, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevLett.101.094101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find that in two dimensions wires can crumple into different morphologies and present the associated morphological phase diagram. Our results are based on experiments with different metallic wires and confirmed by numerical simulations using a discrete element model. We show that during crumpling, the number of loops increases according to a power law with different exponents in each morphology. Furthermore, we observe a power law divergence of the structure's bulk stiffness similar to what is observed in forced crumpling of membranes.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] CRUMPLED NEURAL ARCH
    SULLIVAN, JD
    FARFAN, HF
    ORTHOPEDIC CLINICS OF NORTH AMERICA, 1975, 6 (01) : 199 - 213
  • [32] Repacking of crumpled systems
    Gomes, MAF
    Oliveira, VM
    PHILOSOPHICAL MAGAZINE LETTERS, 1998, 78 (04) : 325 - 329
  • [33] Statistics of crumpled paper
    Sultan, E
    Boudaoud, A
    PHYSICAL REVIEW LETTERS, 2006, 96 (13) : 1 - 4
  • [34] RENORMALIZATION OF CRUMPLED MANIFOLDS
    DAVID, F
    DUPLANTIER, B
    GUITTER, E
    PHYSICAL REVIEW LETTERS, 1993, 70 (15) : 2205 - 2208
  • [35] Crumpled water bells
    Lhuissier, H.
    Villermaux, E.
    JOURNAL OF FLUID MECHANICS, 2012, 693 : 508 - 540
  • [36] Interacting crumpled manifolds
    Pinnow, HA
    Wiese, KJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (05): : 1195 - 1229
  • [37] Sticky crumpled matter
    Croll, Andrew B.
    Liao, Yangchao
    Li, Zhaofan
    Jayawardana, Wathsala M. A.
    Elder, Theresa
    Xia, Wenjie
    MATTER, 2022, 5 (06) : 1792 - 1805
  • [38] Crumpled sheet metal
    Freixe, Alain
    EUROPE-REVUE LITTERAIRE MENSUELLE, 2020, (1093) : 281 - 282
  • [39] NONUNIVERSALITY IN CRUMPLED MANIFOLDS
    DUPLANTIER, B
    PHYSICAL REVIEW LETTERS, 1987, 58 (26) : 2733 - 2737
  • [40] Wire constructions of Abelian topological phases in three or more dimensions
    Iadecola, Thomas
    Neupert, Titus
    Chamon, Claudio
    Mudry, Christopher
    PHYSICAL REVIEW B, 2016, 93 (19)