ISOPERIMETRIC AND WEINGARTEN SURFACES IN THE SCHWARZSCHILD MANIFOLD

被引:0
|
作者
Brendle, Simon [1 ]
Eichmair, Michael
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE HYPERSURFACES; CONSTANT; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any star-shaped convex hypersurface with constant Weingarten curvature in the deSitter-Schwarzschild manifold is a sphere of symmetry. Moreover, we study an isoperimetric problem for bounded domains in the doubled Schwarzschild manifold. We prove the existence of an isoperimetric surface for any value of the enclosed volume, and we completely describe the isoperimetric surfaces for very large enclosed volume. This complements work in H. Bray's thesis, where isoperimetric surfaces homologous to the horizon are studied.
引用
收藏
页码:387 / 407
页数:21
相关论文
共 50 条
  • [41] Regularity of Isoperimetric Regions that are Close to a Smooth Manifold
    Stefano Nardulli
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 199 - 260
  • [42] Lie geometry of linear Weingarten surfaces
    Burstall, Francis E.
    Hertrich-Jeromin, Udo
    Rossman, Wayne
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (7-8) : 413 - 416
  • [43] Special Weingarten surfaces foliated by circles
    Lopez, Rafael
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (04): : 289 - 302
  • [44] A New Approach to Rotational Weingarten Surfaces
    Carretero, Paula
    Castro, Ildefonso
    MATHEMATICS, 2022, 10 (04)
  • [45] Deformation of the surfaces and the Weingarten method.
    Gambier, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1926, 183 : 838 - 840
  • [46] Parabolic Weingarten surfaces in byperbolic space
    Lopez, Rafael
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 59 - 80
  • [47] The determination of surfaces that are at the same time Joachimisthal surfaces and Weingarten surfaces.
    Raffy, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1901, 132 : 1312 - 1315
  • [48] ISOPERIMETRIC INEQUALITIES ON CURVED SURFACES
    CHAVEL, I
    FELDMAN, EA
    ADVANCES IN MATHEMATICS, 1980, 37 (02) : 83 - 98
  • [49] On isoperimetric surfaces in general relativity
    Corvino, Justin
    Gerek, Aydin
    Greenberg, Michael
    Krummel, Brian
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (01) : 63 - 84
  • [50] ISOPERIMETRIC SURFACES WITH BOUNDARY, II
    Frandsen, Abraham
    Sampson, Donald
    Steinburg, Neil
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 259 (02) : 307 - 313