ISOPERIMETRIC AND WEINGARTEN SURFACES IN THE SCHWARZSCHILD MANIFOLD

被引:0
|
作者
Brendle, Simon [1 ]
Eichmair, Michael
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE HYPERSURFACES; CONSTANT; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any star-shaped convex hypersurface with constant Weingarten curvature in the deSitter-Schwarzschild manifold is a sphere of symmetry. Moreover, we study an isoperimetric problem for bounded domains in the doubled Schwarzschild manifold. We prove the existence of an isoperimetric surface for any value of the enclosed volume, and we completely describe the isoperimetric surfaces for very large enclosed volume. This complements work in H. Bray's thesis, where isoperimetric surfaces homologous to the horizon are studied.
引用
收藏
页码:387 / 407
页数:21
相关论文
共 50 条
  • [21] Computational Design of Weingarten Surfaces
    Pellis, Davide
    Kilian, Martin
    Pottmann, Helmut
    Pauly, Mark
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [22] ON A CLASS OF LINEAR WEINGARTEN SURFACES
    Pulov, Vladimir I.
    Hadzhilazova, Mariana Ts.
    Mladenov, Ivailo M.
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 168 - 187
  • [23] Linear Weingarten Surfaces in ℝ3
    J. A. Gálvez
    A. Martínez
    F. Milán
    Monatshefte für Mathematik, 2003, 138 : 133 - 144
  • [24] Potential applications Weingarten surfaces in CAGD .1. Weingarten surfaces and surface shape investigation
    vanBrunt, B
    Grant, K
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) : 569 - 582
  • [25] Weingarten and Linear Weingarten Type Tubular Surfaces in E3
    Tuncer, Yilmaz
    Yoon, Dae Won
    Karacan, Murat Kemal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [26] An isoperimetric comparison theorem for Schwarzschild space and other manifolds
    Bray, H
    Morgan, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1467 - 1472
  • [27] ISOPERIMETRIC SURFACES WITH BOUNDARY
    Dorff, Rebecca
    Johnson, Drew
    Lawlor, Gary R.
    Sampson, Donald
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) : 4467 - 4473
  • [28] The isoperimetric problem on surfaces
    Howards, H
    Hutchings, M
    Morgan, F
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (05): : 430 - 439
  • [29] Multiplicative noise in Euclidean Schwarzschild manifold
    Soares, M. S.
    Svaiter, N. F.
    Zarro, C. A. D.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (06)
  • [30] NEW INTERPRETATION OF EXTENDED SCHWARZSCHILD MANIFOLD
    ISRAEL, W
    PHYSICAL REVIEW, 1966, 143 (04): : 1016 - +