ISOPERIMETRIC AND WEINGARTEN SURFACES IN THE SCHWARZSCHILD MANIFOLD

被引:0
|
作者
Brendle, Simon [1 ]
Eichmair, Michael
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE HYPERSURFACES; CONSTANT; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any star-shaped convex hypersurface with constant Weingarten curvature in the deSitter-Schwarzschild manifold is a sphere of symmetry. Moreover, we study an isoperimetric problem for bounded domains in the doubled Schwarzschild manifold. We prove the existence of an isoperimetric surface for any value of the enclosed volume, and we completely describe the isoperimetric surfaces for very large enclosed volume. This complements work in H. Bray's thesis, where isoperimetric surfaces homologous to the horizon are studied.
引用
收藏
页码:387 / 407
页数:21
相关论文
共 50 条